000 02326nam a22004813i 4500
001 EBC3113810
003 MiAaPQ
005 20240729124551.0
006 m o d |
007 cr cnu||||||||
008 240724s1995 xx o ||||0 eng d
020 _a9781470401337
_q(electronic bk.)
020 _z9780821802342
035 _a(MiAaPQ)EBC3113810
035 _a(Au-PeEL)EBL3113810
035 _a(CaPaEBR)ebr10918763
035 _a(OCoLC)891384107
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA564 -- .B458 1995eb
082 0 _a516.3/5
100 1 _aBeltrametti, Mauro C.
245 1 0 _aSome Special Properties of the Adjunction Theory for 3-Folds in P5.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c1995.
264 4 _c©1995.
300 _a1 online resource (79 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.116
505 0 _aIntro -- Contents -- Introduction -- Chapter 0. Background material -- Chapter 1. The second reduction for n-folds in P[sup(2n-1)] -- Chapter 2. General formulae for threefolds in P[sup(5)] -- Chapter 3. Nefness and bigness of K[sub(x)+ 2K -- Chapter 4. Ampleness of K[sub(x)+ 2K -- Chapter 5. Nefness and bigness of K[sub(x)+ K -- Chapter 6. Invariants for threefolds in P[sub(5)] up to degree 12 -- References.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aAdjunction theory.
650 0 _aThreefolds (Algebraic geometry).
655 4 _aElectronic books.
700 1 _aSchneider, Michael.
700 1 _aSommese, Andrew J.
776 0 8 _iPrint version:
_aBeltrametti, Mauro C.
_tSome Special Properties of the Adjunction Theory for 3-Folds in P5
_dProvidence : American Mathematical Society,c1995
_z9780821802342
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113810
_zClick to View
999 _c69341
_d69341