000 | 03916nam a22004933i 4500 | ||
---|---|---|---|
001 | EBC3113770 | ||
003 | MiAaPQ | ||
005 | 20240729124550.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s1992 xx o ||||0 eng d | ||
020 |
_a9781470408886 _q(electronic bk.) |
||
020 | _z9780821825242 | ||
035 | _a(MiAaPQ)EBC3113770 | ||
035 | _a(Au-PeEL)EBL3113770 | ||
035 | _a(CaPaEBR)ebr10918717 | ||
035 | _a(OCoLC)922981323 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA387 -- .K633 1992eb | |
082 | 0 | _a512/.55 | |
100 | 1 | _aKobayashi, Toshiyuki. | |
245 | 1 | 0 | _aSingular Unitary Representations and Discrete Series for Indefinite Stiefel Manifolds U. |
250 | _a1st ed. | ||
264 | 1 |
_aProvidence : _bAmerican Mathematical Society, _c1992. |
|
264 | 4 | _c©1992. | |
300 | _a1 online resource (117 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aMemoirs of the American Mathematical Society ; _vv.95 |
|
505 | 0 | _aIntro -- Contents -- 0. Introduction -- 1. Notation -- 1. θ-stable parabolic subalgebra -- 2. good range, fair range -- 3. cohomological parabolic induction -- 4. results from Zuckerman and Vogan -- 5. results from Harish-Chandra and Oshima-Matsuki -- 2. Main results -- 1. G = Spfaq) -- 2. main theorem for G = Sp(p,q) -- 3. G = U(p,q) -- 4. main theorem for G = U(p,q) -- 5. G = SO0(p,q) -- 6. main theorem for G = SOo( p,q) -- 7. list and figures of various conditions on parameters -- 8. remarks -- 3. Further notations and preliminary results -- 1. Jantzen-Zuckerman's translation functor -- 2. induction by stages -- 3. definition of A (λ[omitted] λ') -- 4. A (λ[omitted] λ') and derived functor modules -- 5. some symbols -- 4. Some explicit formulas on K multiplicities -- 1. preliminaries -- 2. some alternating polynomials -- 3. result in quaternionic case -- 4. result in complex case -- 5. result in real case -- 6. some auxiliary lemmas -- 7. proof for quarternionic case -- 8. proof for complex case -- 9. proof for real case -- 5. An alternative proof of the sufficiency for R[sup(s)][sub(q)](Cλ)≠ 0 -- 1. theorem: sufficient condition for R[sup(s)][sub(q)](Cλ)≠ 0 -- 2. key lemmas -- 3. proof of the combinatorial part -- 6. Proof of irreducibility results -- 1. irreducibility in the fair range -- 2. twisted differential operators -- 3. theorem -- 4. irreducibility result -- 5. Vogan's idea on the translation principle for Ay(l:g) -- 6. notations about GL{nz,C) and Sp(n,C) -- 7. definition of Cλ -- 8. verification of (6.5.4)(a) -- 9. verification of (6.5.4)(b) -- 10. verification of (6.5.4)(c) -- 11. proof of Corollary(6.4.1) -- 7. Proof of vanishing results outside the fair range -- 1. proof in complex case -- 2. vanishing result in quaternionic case -- 3. maximal parabolic case -- 4. general parabolic case -- 8. Proof of the inequivalence results. | |
505 | 8 | _a1. quarternionic case -- 2. orthogonal case -- References. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aSemisimple Lie groups. | |
650 | 0 | _aRepresentations of groups. | |
650 | 0 | _aHarmonic analysis. | |
650 | 0 | _aStiefel manifolds. | |
655 | 4 | _aElectronic books. | |
776 | 0 | 8 |
_iPrint version: _aKobayashi, Toshiyuki _tSingular Unitary Representations and Discrete Series for Indefinite Stiefel Manifolds U _dProvidence : American Mathematical Society,c1992 _z9780821825242 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aMemoirs of the American Mathematical Society | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113770 _zClick to View |
999 |
_c69301 _d69301 |