000 03916nam a22004933i 4500
001 EBC3113770
003 MiAaPQ
005 20240729124550.0
006 m o d |
007 cr cnu||||||||
008 240724s1992 xx o ||||0 eng d
020 _a9781470408886
_q(electronic bk.)
020 _z9780821825242
035 _a(MiAaPQ)EBC3113770
035 _a(Au-PeEL)EBL3113770
035 _a(CaPaEBR)ebr10918717
035 _a(OCoLC)922981323
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA387 -- .K633 1992eb
082 0 _a512/.55
100 1 _aKobayashi, Toshiyuki.
245 1 0 _aSingular Unitary Representations and Discrete Series for Indefinite Stiefel Manifolds U.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c1992.
264 4 _c©1992.
300 _a1 online resource (117 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.95
505 0 _aIntro -- Contents -- 0. Introduction -- 1. Notation -- 1. θ-stable parabolic subalgebra -- 2. good range, fair range -- 3. cohomological parabolic induction -- 4. results from Zuckerman and Vogan -- 5. results from Harish-Chandra and Oshima-Matsuki -- 2. Main results -- 1. G = Spfaq) -- 2. main theorem for G = Sp(p,q) -- 3. G = U(p,q) -- 4. main theorem for G = U(p,q) -- 5. G = SO0(p,q) -- 6. main theorem for G = SOo( p,q) -- 7. list and figures of various conditions on parameters -- 8. remarks -- 3. Further notations and preliminary results -- 1. Jantzen-Zuckerman's translation functor -- 2. induction by stages -- 3. definition of A (λ[omitted] λ') -- 4. A (λ[omitted] λ') and derived functor modules -- 5. some symbols -- 4. Some explicit formulas on K multiplicities -- 1. preliminaries -- 2. some alternating polynomials -- 3. result in quaternionic case -- 4. result in complex case -- 5. result in real case -- 6. some auxiliary lemmas -- 7. proof for quarternionic case -- 8. proof for complex case -- 9. proof for real case -- 5. An alternative proof of the sufficiency for R[sup(s)][sub(q)](Cλ)≠ 0 -- 1. theorem: sufficient condition for R[sup(s)][sub(q)](Cλ)≠ 0 -- 2. key lemmas -- 3. proof of the combinatorial part -- 6. Proof of irreducibility results -- 1. irreducibility in the fair range -- 2. twisted differential operators -- 3. theorem -- 4. irreducibility result -- 5. Vogan's idea on the translation principle for Ay(l:g) -- 6. notations about GL{nz,C) and Sp(n,C) -- 7. definition of Cλ -- 8. verification of (6.5.4)(a) -- 9. verification of (6.5.4)(b) -- 10. verification of (6.5.4)(c) -- 11. proof of Corollary(6.4.1) -- 7. Proof of vanishing results outside the fair range -- 1. proof in complex case -- 2. vanishing result in quaternionic case -- 3. maximal parabolic case -- 4. general parabolic case -- 8. Proof of the inequivalence results.
505 8 _a1. quarternionic case -- 2. orthogonal case -- References.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aSemisimple Lie groups.
650 0 _aRepresentations of groups.
650 0 _aHarmonic analysis.
650 0 _aStiefel manifolds.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aKobayashi, Toshiyuki
_tSingular Unitary Representations and Discrete Series for Indefinite Stiefel Manifolds U
_dProvidence : American Mathematical Society,c1992
_z9780821825242
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113770
_zClick to View
999 _c69301
_d69301