000 04068nam a22004813i 4500
001 EBC3113750
003 MiAaPQ
005 20240729124550.0
006 m o d |
007 cr cnu||||||||
008 240724s1996 xx o ||||0 eng d
020 _a9781470401504
_q(electronic bk.)
020 _z9780821804407
035 _a(MiAaPQ)EBC3113750
035 _a(Au-PeEL)EBL3113750
035 _a(CaPaEBR)ebr10918686
035 _a(OCoLC)891383955
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA614.82 -- .K875 1996eb
082 0 _a514/.74
100 1 _aKurland, Henry L.
245 1 0 _aIntersection Pairings on Conley Indices.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c1996.
264 4 _c©1996.
300 _a1 online resource (199 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.119
505 0 _aIntro -- Contents -- Introduction -- Chapter 1. Basic Notation and Background Definitions -- A. Basic Notation -- B. The Conley Index -- C. Homology and Cohomology of Conley Indices -- D. Sign Conventions for Products in Homology and Cohomology -- Chapter 2. TheIntersection Pairings L, L, and [sup(#)]L -- A. Pairs of Index Pairs Admissible for the Intersection Pairing -- B. The Euclidean Case: the Homology Intersection Number Pairing L -- C. The Manifold Case: the Intersection Class and NumberPairings L and [(sup(#)]L -- Chapter 3. Statement of the Continuation Results and Examples -- A. Invariance of Intersection Numbers under Continuation -- B. Continuation of £ over a Path of Isolated Invariant Sets -- Chapter 4. Construction of Bilinear Pairings on Conley Indices -- A. The Existence of Admissible Pairs of Index Pairs -- B. Functorially Produced Pairings on the Conley Indices -- C. The Proofs of Theorems 2.4 and 2.11 -- Chapter 5. Proofs of the Continuation Results -- A. Maps between Conley Indices from Paths of Invariant Sets -- B. The Proofs of Theorems 3.1, 3.2, 3.3, and 3.7 -- Chapter 6. Some Basic Computational Tools -- A. Conditions on Singular Cycles for Computing L and [sup(#)]L -- B. The Behavior of £ under Orbit Preserving Maps -- Chapter 7. L for Normally Hyperbolic Invariant Submanifolds -- A. Summary of Results -- B. Computational Preliminaries -- C. Results Leading to the Proof of Theorem 7.5 -- D. Results Leading to the Proof of Theorem 7.6 -- Chapter 8. Products of Intersection Pairings -- A. Preliminary Observations and Definitions -- B. Conley Indices of Product Invariant Sets -- C. A Kunneth Theorem for Conley Indices -- D. Factor and Product Intersection Pairings -- Chapter 9. The Cap Product Representation of L and the Nonsingularity of [sup(#)]L -- A. The Cap Product Representation and Corollaries.
505 8 _aB. Some Technical Propositions on Poincare Duality Isomorphisms and Cech Cap Products -- C. Results Leading to the Proof of Theorem 9.4 -- D. The Case S ∩ ∂ M ≠ θ -- Appendix A. Intersection Numbers and Existence Results for Two-Point Boundary Value Problems of Singularly Perturbed Systems -- Appendix B. Proofs of the Propositions in 9.B -- References.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aFlows (Differentiable dynamical systems).
650 0 _aTopological dynamics.
650 0 _aIntersection theory.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aKurland, Henry L.
_tIntersection Pairings on Conley Indices
_dProvidence : American Mathematical Society,c1996
_z9780821804407
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113750
_zClick to View
999 _c69281
_d69281