000 02396nam a22004933i 4500
001 EBC3113682
003 MiAaPQ
005 20240729124548.0
006 m o d |
007 cr cnu||||||||
008 240724s1971 xx o ||||0 eng d
020 _a9780821899106
_q(electronic bk.)
020 _z9780821818138
035 _a(MiAaPQ)EBC3113682
035 _a(Au-PeEL)EBL3113682
035 _a(CaPaEBR)ebr10882341
035 _a(OCoLC)884584537
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA612.36 -- .K36 1971eb
082 0 _a514/.224
100 1 _aKamber, Franz W.
245 1 0 _aInvariant Differential Operators and the Cohomology of Lie Algebra Sheaves.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c1971.
264 4 _c©1971.
300 _a1 online resource (131 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.1
505 0 _aIntro -- Contents -- Introduction -- Part I -- 1. Lie algebra sheaves of vectorfields -- 2. Invariant differential operators -- 3. The universal envelope of a sheaf of twisted Lie algebras -- 4. Cohomology of sheaves of twisted Lie algebras -- Part II -- 5. Group actions -- 6. Transitive Lie algebra sheaves -- 7. Cohomology of transitive sheaves -- 8. Invariant connections on locally homogeneous spaces -- 9. Explicite computations -- Appendix -- References.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aSheaf theory.
650 0 _aHomology theory.
650 0 _aDifferential operators.
650 0 _aLie algebras.
655 4 _aElectronic books.
700 1 _aTondeur, Philippe.
776 0 8 _iPrint version:
_aKamber, Franz W.
_tInvariant Differential Operators and the Cohomology of Lie Algebra Sheaves
_dProvidence : American Mathematical Society,c1971
_z9780821818138
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113682
_zClick to View
999 _c69215
_d69215