000 03748nam a22004813i 4500
001 EBC3113629
003 MiAaPQ
005 20240729124547.0
006 m o d |
007 cr cnu||||||||
008 240724s1982 xx o ||||0 eng d
020 _a9781470406820
_q(electronic bk.)
020 _z9780821822722
035 _a(MiAaPQ)EBC3113629
035 _a(Au-PeEL)EBL3113629
035 _a(CaPaEBR)ebr10882288
035 _a(OCoLC)922981209
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA614.8 -- .R56 1983eb
082 0 _a510 s;514/.74
100 1 _aRimmer, Russell J.
245 1 0 _aGeneric Bifurications for Involutary Area Preserving Maps.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c1982.
264 4 _c©1983.
300 _a1 online resource (174 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.41
505 0 _aIntro -- TABLE OF CONTENTS -- CHAPTER 1. INTRODUCTION -- CHAPTER 2. PRELIMINARIES -- 2.1 Terminology and Some Useful Results -- 2.1.1 Basic Ideas -- 2.1.2 The Weak and the Strong Topologies -- 2.1.3 Transversality -- 2.2 A Curve of Fixed Points -- CHAPTER 3. BIFURCATION FROM A SYMMETRIC FIXED POINT WITH MULTIPLIERS ± 1 -- 3.1 A Generating Function for a Family of Area Preserving Maps -- 3.2 The Involutory Property and the Generating Functions -- 3.3 Fixed Points Near a Symmetric Fixed Point with Multipliers 1 -- 3.4 Periodic Points Near a Symmetric Fixed Point with Multipliers -1 -- CHAPTER 4. CONDITIONS ON GENERATING FUNCTIONS OCCUR GENERICALLY -- 4.1 A Dense, Open Set of Generating Functions -- 4.2 Preliminary Perturbations -- 4.3 D[sub(3)] and D[sub(4)] are Dense and Open -- 4.4 D[sub(1)] is Dense and Open -- CHAPTER 5. BIFURCATION FROM A SYMMETRIC FIXED POINT u[sub(o)] OF φ[sub(e)][sub(o)] WITH MULTIPLIERS WHICH ARE n[sup(th)] PRIME ROOTS OF UNITY, FOR n ≥ 3 -- 5.1 Periodic Points Bifurcating from (u[sub(o)], e[sub(o)]) -- CHAPTER 6. NORMALISATION OF A FAMILY OF INVOLUTORY AREA PRESERVING MAPS -- 6.1 The Linear Transformation -- 6.2 Normalisation of φ up to Terms of Order n…1 -- 6.3 Polar Coordinates -- CHAPTER 7. GENERIC BIFURCATIONS -- 7.1 The Generic Result -- 7.2 Proof of Lemma 7.1.2 when the Multipliers of φ[sub(e)][sub(o)] at u[sub(o) are 1 -- 7.3 Perturbation when the Multipliers of φ[sub(e)][sub(o)] at u[sub(o)]are n[sup(th)] prime Roots of Unity for n ≥ 2 eo ° 123 -- CHAPTER 8. FAMILIES OF INVOLUTORY AREA PRESERVING MAPS AND SYMMETRIC HAMILTONIAN SYSTEMS -- 8.1 Symmetric Hamiltonian Systems -- 8.2 Existence of Families of Involutory Area Preserving Maps -- APPENDIX 1 PROOFS OF TWO RESULTS USED IN CHAPTER 4 -- A1.1Proof of Proposition 4.2.2(ii) -- A1.2 Proof of Lemma 4.2.4 -- REFERENCES.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aDifferentiable dynamical systems.
650 0 _aMappings (Mathematics).
650 0 _aBifurcation theory.
650 0 _aHamiltonian systems.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aRimmer, Russell J.
_tGeneric Bifurications for Involutary Area Preserving Maps
_dProvidence : American Mathematical Society,c1982
_z9780821822722
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113629
_zClick to View
999 _c69162
_d69162