000 03486nam a22004813i 4500
001 EBC3113475
003 MiAaPQ
005 20240729124544.0
006 m o d |
007 cr cnu||||||||
008 240724s1980 xx o ||||0 eng d
020 _a9781470406349
_q(electronic bk.)
020 _z9780821822302
035 _a(MiAaPQ)EBC3113475
035 _a(Au-PeEL)EBL3113475
035 _a(CaPaEBR)ebr10882134
035 _a(OCoLC)922981109
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA612.76 -- .B38 1980eb
082 0 _a510 s;514/.224
100 1 _aBaues, Hans J.
245 1 0 _aGeometry of Loop Spaces and the Cobar Construction.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c1980.
264 4 _c©1980.
300 _a1 online resource (194 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.25
505 0 _aIntro -- Contents -- Introduction -- Prologue -- Chapter I: The bar and cobar constructions -- 1 The geometric bar construction -- 2 The geometric cobar construction for simplicial spaces -- 3 The algebraic bar and cobar constructions -- Appendix 1: The cobar construction of Adams -- Appendix 2: Loop spaces of projective spaces -- 4 Adjunction and strongly homotopy multiplicative maps -- Chapter II: A model theorem for loop spaces -- 1 Realization of functors -- Appendix: DI categories with retractions -- 2 A model theorem for loop spaces -- 3 Approximation of path spaces -- 4 Proof of the model theorem -- Chapter III: On the desuspension of model functors -- 1 Abstract complexes -- 2 Model functors and their desuspension by cellular strings -- Appendix: Reduced model functors and iterated loop spaces -- 3 Cellular strings in the simplex -- 4 Cellular strings in the cube -- 5 Simplicial subdivision of cubes and cubical subdivision of parallelohedra -- 6 Cellular strings in products of simplices -- 7 Cellular strings in the parallelohedron C[sup(n)] -- Chapter IV: Applications -- 1 The geometric cobar construction -- 2 A diagonal for the cobar construction and a model for the double loop space of a simplicial space -- 3 CW-models of Milgram for Ω[sup(n)]Σ[sup(n)]× -- Appendix: The cellular chain complex of the Milgram models -- 4 A CW-model for Ω[sup(n)]S[sup(n)] -- 5 A model for ΩΩ[sup(n)]Σ[sup(n)]× -- Appendix: On the suspension of Hopf maps -- References -- Index -- A -- B -- C -- D -- E -- F -- H -- I -- J -- K -- L -- M -- O -- P -- R -- S -- T -- V -- W.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aLoop spaces.
650 0 _aCobar construction (Topology).
650 0 _aFunctor theory.
650 0 _aComplexes, Semisimplicial.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aBaues, Hans J.
_tGeometry of Loop Spaces and the Cobar Construction
_dProvidence : American Mathematical Society,c1980
_z9780821822302
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113475
_zClick to View
999 _c69009
_d69009