000 02434nam a22004693i 4500
001 EBC3113453
003 MiAaPQ
005 20240729124543.0
006 m o d |
007 cr cnu||||||||
008 240724s1978 xx o ||||0 eng d
020 _a9781470403546
_q(electronic bk.)
020 _z9780821822074
035 _a(MiAaPQ)EBC3113453
035 _a(Au-PeEL)EBL3113453
035 _a(CaPaEBR)ebr10882112
035 _a(OCoLC)884584214
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA387 -- .S36 1978eb
082 0 _a510/.8 s;512/.53
100 1 _aSchochetman, Irwin E.
245 1 0 _aIntegral Operators in the Theory of Induced Banach Representations.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c1978.
264 4 _c©1978.
300 _a1 online resource (65 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.16
505 0 _aIntro -- TABLE OF CONTENTS -- 0. INTRODUCTION -- I. PRELIMINARIES -- 1. INDUCED BANACH REPRESENTATIONS -- 2. THE INTEGRATED FORM -- II. EQUIVALENT INDUCED REPRESENTATIONS -- 3. FIRST EQUIVALENCE -- 4. SECOND EQUIVALENCE -- III. ADMISSIBLE FUNCTION SPACES -- 5. MOTIVATION -- 6. TRANSLATION INVARIENCE AND TOPOLOGY -- 7. ADMISSIBLE SPACES AND CLOSED SUBGROUPS -- IV. COMPACTNESS FOR INDUCED REPRESENTATIONS -- 8. KERNEL COMPARISONS -- 9. COMPACT REPRESENTATIONS -- 10. HILBERT-SCHMIDT REPRESENTATIONS -- 11. TRACE-CLASS REPRESENTATIONS -- REFERENCES.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aLocally compact groups.
650 0 _aRepresentations of groups.
650 0 _aIntegral operators.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aSchochetman, Irwin E.
_tIntegral Operators in the Theory of Induced Banach Representations
_dProvidence : American Mathematical Society,c1978
_z9780821822074
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113453
_zClick to View
999 _c68987
_d68987