000 05929nam a22005173i 4500
001 EBC3113242
003 MiAaPQ
005 20240729124537.0
006 m o d |
007 cr cnu||||||||
008 240724s2013 xx o ||||0 eng d
020 _a9780821898697
_q(electronic bk.)
020 _z9780821890387
035 _a(MiAaPQ)EBC3113242
035 _a(Au-PeEL)EBL3113242
035 _a(CaPaEBR)ebr10878697
035 _a(OCoLC)840599907
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA166.245 -- .D56 2013eb
082 0 _a511/.5
100 1 _aBader, David A.
245 1 0 _aGraph Partitioning and Graph Clustering.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2013.
264 4 _c©2013.
300 _a1 online resource (258 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aContemporary Mathematics ;
_vv.588
505 0 _aIntro -- Preface -- 1. Introducing the 10th Challenge - Graph Partitioning and Graph Clustering -- 2. Key Results -- 3. Challenge Description -- 4. Contributions to this Collection -- 5. Directions for Further Research -- High quality graph partitioning -- 1. Introduction -- 2. Preliminaries -- 3. Related Work -- 4. Karlsruhe Fast Flow Partitioner -- 5. KaFFPa Evolutionary -- 6. Experiments -- 7. Conclusion and Future Work -- References -- Abusing a hypergraph partitioner for unweighted graph partitioning -- 1. Introduction -- 2. Mondriaan -- 3. Results -- 4. Conclusion -- References -- Parallel partitioning with Zoltan: Is hypergraph partitioning worth it? -- 1. Introduction -- 2. Models and Metrics -- 3. Overview of the Zoltan Hypergraph Partitioner -- 4. Experiments -- 5. Conclusions -- Acknowledgements -- References -- UMPa: A multi-objective, multi-level partitioner for communication minimization -- 1. Introduction -- 2. Background -- 3. UMPa: A multi-objective partitioning tool for communication minimization -- 4. Experimental results -- 5. Conclusions and future work -- References -- Appendix A. DIMACS Challenge Results -- Shape optimizing load balancing for MPI-parallel adaptive numerical simulations -- 1. Introduction -- 2. Related Work -- 3. Diffusion-based Repartitioning with DibaP -- 4. PDibaP: Parallel DibaP for Repartitioning -- 5. Experiments -- 6. Conclusions -- References -- Graph partitioning for scalable distributed graph computations -- 1. Introduction -- 2. Parallel Breadth-first Search -- 3. Analysis of Communication Costs -- 4. Graph and Hypergraph Partitioning Metrics -- 5. Experimental Setup -- 6. Microbenchmarking Collectives Performance -- 7. Performance Analysis and Results -- 8. Conclusions and Future Work -- Acknowledgments -- References -- Appendix on edge count per processor.
505 8 _aUsing graph partitioning for efficient network modularity optimization -- 1. Introduction -- 2. Reduction of modularity optimization to minimum weighted cut -- 3. Implementation of the modularity optimization algorithm based on the Metis package -- 4. Comparison on DIMACS testbed graphs -- 5. Conclusion -- References -- Modularity maximization in networks by variable neighborhood search -- 1. Introduction -- 2. Description of the heuristic -- 3. Description of the exact method -- 4. Experimental Results -- 5. Conclusion -- References -- Network clustering via clique relaxations: A community based approach -- 1. Introduction -- 2. Background -- 3. Clustering Algorithm -- 4. Computational Results -- 5. Conclusion -- Acknowledgements -- References -- Identifying base clusters and their application to maximizing modularity -- 1. Introduction -- 2. Background -- 3. Finding Base Clusters in Complex Networks -- 4. Modularity Maximization Using Base Clusters -- 5. Discussion and Future Work -- References -- Complete hierarchical cut-clustering: A case study on expansion and modularity -- 1. Introduction -- 2. Preliminaries -- 3. Experimental Study -- 4. Conclusion -- References -- A partitioning-based divisive clustering technique for maximizing the modularity -- 1. Introduction -- 2. Background -- 3. Algorithms -- 4. Experiments -- 5. Conclusion -- Acknowledgment -- References -- Appendix A. DIMACS Challenge results -- An ensemble learning strategy for graph clustering -- 1. Introduction -- 2. Ensemble Learning -- 3. Core Groups Graph Clustering Scheme -- 4. Modularity and its Optimization -- 5. Evaluation -- 6. A Global Analysis View on the CGGC Scheme -- 7. Conclusion -- References -- Parallel community detection for massive graphs -- 1. Communities in Graphs -- 2. Parallel Agglomerative Community Detection.
505 8 _a3. Mapping the Agglomerative Algorithm to Threaded Platforms -- 4. Parallel Performance -- 5. Related Work -- 6. Observations -- Acknowledgments -- References -- Graph coarsening and clustering on the GPU -- 1. Introduction -- 2. Clustering -- 3. Coarsening -- 4. Parallel implementation -- 5. Results -- 6. Conclusion -- 7. Appendix -- Acknowledgements -- References.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aGraph algorithms -- Congresses.
650 0 _aGraph theory -- Congresses.
655 4 _aElectronic books.
700 1 _aMeyerhenke, Henning.
700 1 _aSanders, Peter.
700 1 _aWagner, Dorothea.
776 0 8 _iPrint version:
_aBader, David A.
_tGraph Partitioning and Graph Clustering
_dProvidence : American Mathematical Society,c2013
_z9780821890387
797 2 _aProQuest (Firm)
830 0 _aContemporary Mathematics
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113242
_zClick to View
999 _c68776
_d68776