000 | 05929nam a22005173i 4500 | ||
---|---|---|---|
001 | EBC3113242 | ||
003 | MiAaPQ | ||
005 | 20240729124537.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2013 xx o ||||0 eng d | ||
020 |
_a9780821898697 _q(electronic bk.) |
||
020 | _z9780821890387 | ||
035 | _a(MiAaPQ)EBC3113242 | ||
035 | _a(Au-PeEL)EBL3113242 | ||
035 | _a(CaPaEBR)ebr10878697 | ||
035 | _a(OCoLC)840599907 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA166.245 -- .D56 2013eb | |
082 | 0 | _a511/.5 | |
100 | 1 | _aBader, David A. | |
245 | 1 | 0 | _aGraph Partitioning and Graph Clustering. |
250 | _a1st ed. | ||
264 | 1 |
_aProvidence : _bAmerican Mathematical Society, _c2013. |
|
264 | 4 | _c©2013. | |
300 | _a1 online resource (258 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aContemporary Mathematics ; _vv.588 |
|
505 | 0 | _aIntro -- Preface -- 1. Introducing the 10th Challenge - Graph Partitioning and Graph Clustering -- 2. Key Results -- 3. Challenge Description -- 4. Contributions to this Collection -- 5. Directions for Further Research -- High quality graph partitioning -- 1. Introduction -- 2. Preliminaries -- 3. Related Work -- 4. Karlsruhe Fast Flow Partitioner -- 5. KaFFPa Evolutionary -- 6. Experiments -- 7. Conclusion and Future Work -- References -- Abusing a hypergraph partitioner for unweighted graph partitioning -- 1. Introduction -- 2. Mondriaan -- 3. Results -- 4. Conclusion -- References -- Parallel partitioning with Zoltan: Is hypergraph partitioning worth it? -- 1. Introduction -- 2. Models and Metrics -- 3. Overview of the Zoltan Hypergraph Partitioner -- 4. Experiments -- 5. Conclusions -- Acknowledgements -- References -- UMPa: A multi-objective, multi-level partitioner for communication minimization -- 1. Introduction -- 2. Background -- 3. UMPa: A multi-objective partitioning tool for communication minimization -- 4. Experimental results -- 5. Conclusions and future work -- References -- Appendix A. DIMACS Challenge Results -- Shape optimizing load balancing for MPI-parallel adaptive numerical simulations -- 1. Introduction -- 2. Related Work -- 3. Diffusion-based Repartitioning with DibaP -- 4. PDibaP: Parallel DibaP for Repartitioning -- 5. Experiments -- 6. Conclusions -- References -- Graph partitioning for scalable distributed graph computations -- 1. Introduction -- 2. Parallel Breadth-first Search -- 3. Analysis of Communication Costs -- 4. Graph and Hypergraph Partitioning Metrics -- 5. Experimental Setup -- 6. Microbenchmarking Collectives Performance -- 7. Performance Analysis and Results -- 8. Conclusions and Future Work -- Acknowledgments -- References -- Appendix on edge count per processor. | |
505 | 8 | _aUsing graph partitioning for efficient network modularity optimization -- 1. Introduction -- 2. Reduction of modularity optimization to minimum weighted cut -- 3. Implementation of the modularity optimization algorithm based on the Metis package -- 4. Comparison on DIMACS testbed graphs -- 5. Conclusion -- References -- Modularity maximization in networks by variable neighborhood search -- 1. Introduction -- 2. Description of the heuristic -- 3. Description of the exact method -- 4. Experimental Results -- 5. Conclusion -- References -- Network clustering via clique relaxations: A community based approach -- 1. Introduction -- 2. Background -- 3. Clustering Algorithm -- 4. Computational Results -- 5. Conclusion -- Acknowledgements -- References -- Identifying base clusters and their application to maximizing modularity -- 1. Introduction -- 2. Background -- 3. Finding Base Clusters in Complex Networks -- 4. Modularity Maximization Using Base Clusters -- 5. Discussion and Future Work -- References -- Complete hierarchical cut-clustering: A case study on expansion and modularity -- 1. Introduction -- 2. Preliminaries -- 3. Experimental Study -- 4. Conclusion -- References -- A partitioning-based divisive clustering technique for maximizing the modularity -- 1. Introduction -- 2. Background -- 3. Algorithms -- 4. Experiments -- 5. Conclusion -- Acknowledgment -- References -- Appendix A. DIMACS Challenge results -- An ensemble learning strategy for graph clustering -- 1. Introduction -- 2. Ensemble Learning -- 3. Core Groups Graph Clustering Scheme -- 4. Modularity and its Optimization -- 5. Evaluation -- 6. A Global Analysis View on the CGGC Scheme -- 7. Conclusion -- References -- Parallel community detection for massive graphs -- 1. Communities in Graphs -- 2. Parallel Agglomerative Community Detection. | |
505 | 8 | _a3. Mapping the Agglomerative Algorithm to Threaded Platforms -- 4. Parallel Performance -- 5. Related Work -- 6. Observations -- Acknowledgments -- References -- Graph coarsening and clustering on the GPU -- 1. Introduction -- 2. Clustering -- 3. Coarsening -- 4. Parallel implementation -- 5. Results -- 6. Conclusion -- 7. Appendix -- Acknowledgements -- References. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aGraph algorithms -- Congresses. | |
650 | 0 | _aGraph theory -- Congresses. | |
655 | 4 | _aElectronic books. | |
700 | 1 | _aMeyerhenke, Henning. | |
700 | 1 | _aSanders, Peter. | |
700 | 1 | _aWagner, Dorothea. | |
776 | 0 | 8 |
_iPrint version: _aBader, David A. _tGraph Partitioning and Graph Clustering _dProvidence : American Mathematical Society,c2013 _z9780821890387 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aContemporary Mathematics | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113242 _zClick to View |
999 |
_c68776 _d68776 |