000 03814nam a22005173i 4500
001 EBC3113152
003 MiAaPQ
005 20240729124534.0
006 m o d |
007 cr cnu||||||||
008 240724s2005 xx o ||||0 eng d
020 _a9780821879658
_q(electronic bk.)
020 _z9780821837054
035 _a(MiAaPQ)EBC3113152
035 _a(Au-PeEL)EBL3113152
035 _a(CaPaEBR)ebr10878607
035 _a(OCoLC)774059162
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA612.3 -- .L568 2005eb
082 0 _a516.3/5
100 1 _aLipman, Joseph.
245 1 0 _aVariance and Duality for Cousin Complexes on Formal Schemes.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2005.
264 4 _c©2005.
300 _a1 online resource (290 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aContemporary Mathematics ;
_vv.375
505 0 _aIntro -- Contents -- Preface -- Part 1. Pseudofunctorial behavior of Cousin complexes on formal schemes -- 1. Introduction and main results -- 2. Preliminaries on formal schemes -- 3. Local cohomology and Cousin complexes -- 4. Generalized fractions and pseudofunctors -- 5. Pseudofunctorial behavior for smooth maps -- 6. Closed immersions and base change -- 7. The retract case -- 8. The main theorem -- 9. Residual and dualizing complexes -- 10. Some explicit descriptions -- References -- Part 2. Duality for Cousin complexes -- 1. Introduction -- 1.1. Conventions -- 2. Traces -- 2.1. Local rings -- 2.2. Trace at the graded level -- 2.3. Relative projective space -- 2.4. The Trace Theorem -- 2.5. Traces and translations -- 3. The twisted inverse image pseudofunctor -- 3.1. Factorizations -- 3.2. Flat base change -- 3.3. Comparing pseudofunctors -- 4. The comparison map -- 4.1. Pseudo-proper maps -- 4.2. Étale base change -- 5. Smooth maps -- 5.1. Verdier's isomorphism -- 5.2. Smooth pseudo-finite maps -- 5.3. The isomorphism theorem for smooth maps -- 6. The Cousin of the comparison map -- 6.1. Definitions and notations -- 6.2. Closed immersions -- 6.3. General maps -- 7. The Comparison map for flat morphisms -- 7.1. Tor and Ext -- 7.2. Local cohomology and the twisted inverse image -- 8. The universal property of the trace -- 8.1. Duality for Cousin complexes -- 9. Variants -- 9.1. Preliminaries -- 9.2. Twisted inverse image via residual complexes -- 9.3. Comparison of the two twisted inverse images -- References -- Part 3. Pasting pseudofunctors -- 1. Introduction -- 2. The abstract pasting results -- 3. Proofs I (generalized isomorphisms in the labeled setup) -- 4. Proofs II (the cocycle condition) -- 5. Proofs III (old isomorphisms and linearity) -- 6. Proofs IV (the output) -- 7. Applications -- References -- Index.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aHomology theory.
650 0 _aAbelian categories.
650 0 _aDuality theory (Mathematics).
650 0 _aAlgebra, Homological.
650 0 _aSchemes (Algebraic geometry).
655 4 _aElectronic books.
700 1 _aNayak, Suresh.
700 1 _aSastry, Pramathanath.
776 0 8 _iPrint version:
_aLipman, Joseph
_tVariance and Duality for Cousin Complexes on Formal Schemes
_dProvidence : American Mathematical Society,c2005
_z9780821837054
797 2 _aProQuest (Firm)
830 0 _aContemporary Mathematics
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113152
_zClick to View
999 _c68686
_d68686