000 02997nam a22004693i 4500
001 EBC3113065
003 MiAaPQ
005 20240729124532.0
006 m o d |
007 cr cnu||||||||
008 240724s1982 xx o ||||0 eng d
020 _a9780821875933
_q(electronic bk.)
020 _z9780821850060
035 _a(MiAaPQ)EBC3113065
035 _a(Au-PeEL)EBL3113065
035 _a(CaPaEBR)ebr10873228
035 _a(OCoLC)882240296
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA224 -- .S27 1982eb
082 0 _a511/.42
100 1 _aSchempp, Walter.
245 1 0 _aComplex Contour Integral Representation of Cardinal Spline Functions :
_bContemporary Math.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c1982.
264 4 _c©1982.
300 _a1 online resource (125 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aContemporary Mathematics ;
_vv.7
505 0 _aIntro -- Contents -- Foreword -- Preface -- Acknowledgements -- 1. Cardinal Spline Functions -- 2. A Complex Contour Integral Representation of Basis Spline Functions (Compact Paths) -- 3. The Case of Equidistant Knots -- 4. Cardinal Exponential Spline Functions and Interpolants -- 5. Inversion of Laplace Transform -- 6. A Complex Contour Integral Representation of Cardinal Exponential Spline Functions (Non-Compact Paths) -- 7. A Complex Contour Integral Representation of Euler-Frobenius Polynomials (Non-Compact Paths) -- 8. Cardinal Exponential Spline Interpolants of Higher Order -- 9. Convergence Behaviour of Cardinal Exponential Spline Interpolants -- 10. Divergence Behaviour of Polynomial Interpolants on Compact Intervals (The Méray-Runge Phenomenon) -- 11. Cardinal Logarithmic Spline Interpolants -- 12. Inversion of Mellin Transform -- 13. A Complex Contour Integral Representation of Cardinal Logarithmic Spline Interpolants (Non-Compact Paths) -- 14. Divergence Behaviour of Cardinal Logarithmic Spline Interpolants (The Newman-Schoenberg Phenomenon) -- 15. Summary and Concluding Remarks -- References -- Subject Index -- Author Index.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aSpline theory.
650 0 _aIntegral transforms.
650 0 _aIntegral representations.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aSchempp, Walter
_tComplex Contour Integral Representation of Cardinal Spline Functions
_dProvidence : American Mathematical Society,c1982
_z9780821850060
797 2 _aProQuest (Firm)
830 0 _aContemporary Mathematics
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113065
_zClick to View
999 _c68600
_d68600