000 02086nam a22004333i 4500
001 EBC3074890
003 MiAaPQ
005 20240729124459.0
006 m o d |
007 cr cnu||||||||
008 240724s1996 xx o ||||0 eng d
020 _a9781461207450
_q(electronic bk.)
020 _z9780387947242
035 _a(MiAaPQ)EBC3074890
035 _a(Au-PeEL)EBL3074890
035 _a(CaPaEBR)ebr10918311
035 _a(OCoLC)958525906
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA273.A1-274.9
100 1 _aNeal, Radford M.
245 1 0 _aBayesian Learning for Neural Networks.
250 _a1st ed.
264 1 _aNew York, NY :
_bSpringer,
_c1996.
264 4 _c©1996.
300 _a1 online resource (194 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aLecture Notes in Statistics Series ;
_vv.118
505 0 _aLecture Notes in Statistics -- Bayesian Learning for Neural Networks -- Copyright -- Preface -- Contents -- List of Figures -- Chapter 1 Introduction -- Chapter 2 Priors for Infinite Networks -- Chapter 3 Monte Carlo Implementation -- Chapter 4 Evaluation of Neural Network Models -- Chapter 5 Conclusions and Further Work -- Appendix A Details of the Implementation -- Appendix B Obtaining the software -- Bibliography -- Index.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aBayesian statistical decision theory.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aNeal, Radford M.
_tBayesian Learning for Neural Networks
_dNew York, NY : Springer,c1996
_z9780387947242
797 2 _aProQuest (Firm)
830 0 _aLecture Notes in Statistics Series
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3074890
_zClick to View
999 _c67378
_d67378