000 | 04232nam a22004693i 4500 | ||
---|---|---|---|
001 | EBC3040677 | ||
003 | MiAaPQ | ||
005 | 20240729124318.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s1996 xx o ||||0 eng d | ||
020 |
_a9783110821635 _q(electronic bk.) |
||
020 | _z9783110143331 | ||
035 | _a(MiAaPQ)EBC3040677 | ||
035 | _a(Au-PeEL)EBL3040677 | ||
035 | _a(CaPaEBR)ebr10588555 | ||
035 | _a(CaONFJC)MIL571148 | ||
035 | _a(OCoLC)922943490 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQC20.7.T65 | |
082 | 0 | _a530.1/54 | |
100 | 1 | _aWeinstein, Tilla. | |
245 | 1 | 3 | _aAn Introduction to Lorentz Surfaces. |
250 | _a1st ed. | ||
264 | 1 |
_aBerlin/Boston : _bWalter de Gruyter GmbH, _c1996. |
|
264 | 4 | _c©1996. | |
300 | _a1 online resource (228 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aDe Gruyter Expositions in Mathematics Series ; _vv.22 |
|
505 | 0 | _aIntro -- Introduction -- Chapter 1. Null lines on Lorentz surfaces -- 1.1. Scalar products and causal character -- 1.2. Metrics and null direction fields -- 1.3. Lorentz surfaces and proper null coordinates -- 1.4. A first look at null lines -- 1.5. The Euclidean plane E2 and the Minkowski plane E21 -- Chapter 2. Box surfaces, yardsticks and global properties of Lorentzian metrics -- 2.1. The one-one correspondence between box surfaces and Lorentz surfaces -- 2.2. Yardsticks and time-orientability -- 2.3. Intrinsic curvature and a first look at the example in our logo -- 2.4. Geodesics and pregeodesics -- 2.5. Completeness, inextendibility, and causality conditions -- Chapter 3. Conformal equivalence and the Poincaré index -- 3.1. Definitions of conformal equivalence -- 3.2. Cj conformally equivalent Lorentz surfaces need not be Cj+1 conformally equivalent -- 3.3. The Poincaré index -- 3.4. The Poincaré Index Theorem -- Chapter 4 Kulkarni's conformal boundary -- 4.1. Ideal endpoints -- 4.2. The points on the conformal boundary -- 4.3. The topology on the conformal boundary -- 4.4. Some properties of the conformal boundary -- Chapter 5 Using the conformal boundary -- 5.1. The foliations X and Y -- 5.2. Spans on ℒ -- 5.3. A special ℋ+ chart on the span of a null curve -- 5.4. Characterization of C0 smoothability of the conformal boundary -- 5.5. Kulkarni's use of the conformal boundary -- Chapter 6. Conformal invariants on Lorentz surfaces -- 6.1. Conformal indices on an arbitrary Lorentz surface -- 6.2. Conformal indices associated with ∂ℒ and more properties of ∂ℒ -- 6.3. Some notions of symmetry -- 6.4. Smyth's digraph, determining sets and some other conformal invariants -- Chapter 7. Classical surface theory and harmonically immersed surfaces. | |
505 | 8 | _a7.1. A quick review of local surface theory in Euclidean 3-space -- 7.2. A quick review of local surface theory in Minkowski 3-space -- 7.3. Contrasting the behavior of surfaces in E3 and E3,1 -- 7.4. The Hilbert-Holmgren theorem for harmonically immersed surfaces -- Chapter 8. Conformal realization of Lorentz surfaces in Minkowski 3-space -- 8.1. Entire timelike minimal surfaces in E3,1 -- 8.2. Associate families of minimal surfaces -- 8.3. Some conformal realizations of Lorentz surfaces in E3,1 -- 8.4. Some last remarks on conformal imbeddings and immersions -- Bibliography -- Index. | |
520 | _aNo detailed description available for "An Introduction to Lorentz Surfaces". | ||
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
655 | 4 | _aElectronic books. | |
776 | 0 | 8 |
_iPrint version: _aWeinstein, Tilla _tAn Introduction to Lorentz Surfaces _dBerlin/Boston : Walter de Gruyter GmbH,c1996 _z9783110143331 |
797 | 2 | _aProQuest (Firm) | |
830 | 3 | _aDe Gruyter Expositions in Mathematics Series | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3040677 _zClick to View |
999 |
_c64276 _d64276 |