000 04232nam a22004693i 4500
001 EBC3040677
003 MiAaPQ
005 20240729124318.0
006 m o d |
007 cr cnu||||||||
008 240724s1996 xx o ||||0 eng d
020 _a9783110821635
_q(electronic bk.)
020 _z9783110143331
035 _a(MiAaPQ)EBC3040677
035 _a(Au-PeEL)EBL3040677
035 _a(CaPaEBR)ebr10588555
035 _a(CaONFJC)MIL571148
035 _a(OCoLC)922943490
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQC20.7.T65
082 0 _a530.1/54
100 1 _aWeinstein, Tilla.
245 1 3 _aAn Introduction to Lorentz Surfaces.
250 _a1st ed.
264 1 _aBerlin/Boston :
_bWalter de Gruyter GmbH,
_c1996.
264 4 _c©1996.
300 _a1 online resource (228 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aDe Gruyter Expositions in Mathematics Series ;
_vv.22
505 0 _aIntro -- Introduction -- Chapter 1. Null lines on Lorentz surfaces -- 1.1. Scalar products and causal character -- 1.2. Metrics and null direction fields -- 1.3. Lorentz surfaces and proper null coordinates -- 1.4. A first look at null lines -- 1.5. The Euclidean plane E2 and the Minkowski plane E21 -- Chapter 2. Box surfaces, yardsticks and global properties of Lorentzian metrics -- 2.1. The one-one correspondence between box surfaces and Lorentz surfaces -- 2.2. Yardsticks and time-orientability -- 2.3. Intrinsic curvature and a first look at the example in our logo -- 2.4. Geodesics and pregeodesics -- 2.5. Completeness, inextendibility, and causality conditions -- Chapter 3. Conformal equivalence and the Poincaré index -- 3.1. Definitions of conformal equivalence -- 3.2. Cj conformally equivalent Lorentz surfaces need not be Cj+1 conformally equivalent -- 3.3. The Poincaré index -- 3.4. The Poincaré Index Theorem -- Chapter 4 Kulkarni's conformal boundary -- 4.1. Ideal endpoints -- 4.2. The points on the conformal boundary -- 4.3. The topology on the conformal boundary -- 4.4. Some properties of the conformal boundary -- Chapter 5 Using the conformal boundary -- 5.1. The foliations X and Y -- 5.2. Spans on ℒ -- 5.3. A special ℋ+ chart on the span of a null curve -- 5.4. Characterization of C0 smoothability of the conformal boundary -- 5.5. Kulkarni's use of the conformal boundary -- Chapter 6. Conformal invariants on Lorentz surfaces -- 6.1. Conformal indices on an arbitrary Lorentz surface -- 6.2. Conformal indices associated with ∂ℒ and more properties of ∂ℒ -- 6.3. Some notions of symmetry -- 6.4. Smyth's digraph, determining sets and some other conformal invariants -- Chapter 7. Classical surface theory and harmonically immersed surfaces.
505 8 _a7.1. A quick review of local surface theory in Euclidean 3-space -- 7.2. A quick review of local surface theory in Minkowski 3-space -- 7.3. Contrasting the behavior of surfaces in E3 and E3,1 -- 7.4. The Hilbert-Holmgren theorem for harmonically immersed surfaces -- Chapter 8. Conformal realization of Lorentz surfaces in Minkowski 3-space -- 8.1. Entire timelike minimal surfaces in E3,1 -- 8.2. Associate families of minimal surfaces -- 8.3. Some conformal realizations of Lorentz surfaces in E3,1 -- 8.4. Some last remarks on conformal imbeddings and immersions -- Bibliography -- Index.
520 _aNo detailed description available for "An Introduction to Lorentz Surfaces".
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aWeinstein, Tilla
_tAn Introduction to Lorentz Surfaces
_dBerlin/Boston : Walter de Gruyter GmbH,c1996
_z9783110143331
797 2 _aProQuest (Firm)
830 3 _aDe Gruyter Expositions in Mathematics Series
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3040677
_zClick to View
999 _c64276
_d64276