000 | 04973nam a22004933i 4500 | ||
---|---|---|---|
001 | EBC3040487 | ||
003 | MiAaPQ | ||
005 | 20240729124315.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s1996 xx o ||||0 eng d | ||
020 |
_a9783110811117 _q(electronic bk.) |
||
020 | _z9783110150957 | ||
035 | _a(MiAaPQ)EBC3040487 | ||
035 | _a(Au-PeEL)EBL3040487 | ||
035 | _a(CaPaEBR)ebr10588248 | ||
035 | _a(CaONFJC)MIL558695 | ||
035 | _a(OCoLC)922943390 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA551 -- .L29 1996eb | |
082 | 0 | _a516.35 | |
100 | 1 | _aBroglia, Fabrizio. | |
245 | 1 | 0 | _aLectures in Real Geometry. |
250 | _a1st ed. | ||
264 | 1 |
_aBerlin/Boston : _bWalter de Gruyter GmbH, _c1996. |
|
264 | 4 | _c©1996. | |
300 | _a1 online resource (282 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aDe Gruyter Expositions in Mathematics Series ; _vv.23 |
|
505 | 0 | _aIntro -- Foreword -- Introduction -- Basic algorithms in real algebraic geometry and their complexity: from Sturm's theorem to the existential theory of reals -- 1. Introduction -- 2. Real closed fields -- 2.1. Definition and first examples of real closed fields -- 2.2. Cauchy index and real root counting -- 3. Real root counting -- 3.1. Sylvester sequence -- 3.2. Subresultants and remainders -- 3.3. Sylvester-Habicht sequence -- 3.4. Quadratic forms, Hankel matrices and real roots -- 3.5. Summary and discussion -- 4. Complexity of algorithms -- 5. Sign determinations -- 5.1. Simultaneous inequalities -- 5.2. Thom's lemma and its consequences -- 6. Existential theory of reals -- 6.1. Solving multivariate polynomial systems -- 6.2. Some real algebraic geometry -- 6.3. Finding points on hypersurfaces -- 6.4. Finding non empty sign conditions -- References -- Nash functions and manifolds -- 1. Introduction -- 2. Nash functions -- 3. Approximation Theorem -- 4. Nash manifolds -- 5. Sheaf theory of Nash function germs -- 6. Nash groups -- References -- Approximation theorems in real analytic and algebraic geometry -- Introduction -- I. The analytic case -- 1. The Whitney topology for sections of a sheaf -- 2. A Whitney approximation theorem -- 3. Approximation for sections of a sheaf -- 4. Approximation for sheaf homomorphisms -- II. The algebraic case -- 5. Preliminaries on real algebraic varieties -- 6. A- and B-coherent sheaves -- 7. The approximation theorems in the algebraic case -- III. Algebraic and analytic bundles -- 8. Duality theory -- 9. Strongly algebraic vector bundles -- 10. Approximation for sections of vector bundles -- References -- Real abelian varieties and real algebraic curves -- Introduction -- 1. Generalities on complex tori -- 1.1. Complex tori -- 1.2. Homology and cohomology of tori -- 1.3. Morphisms of complex tori. | |
505 | 8 | _a1.4. The Albanese and the Picard variety -- 1.5. Line bundles on complex tori -- 1.6. Polarizations -- 1.7. Riemann's bilinear relations and moduli spaces -- 2. Real structures -- 2.1. Definition of real structures -- 2.2. Real models -- 2.3. The action of conjugation on functions and forms -- 2.4. The action of conjugation on cohomology -- 2.5. A theorem of Comessatti -- 2.6. Group cohomology -- 2.7. The action of conjugation on the Albanese variety and the Picard group -- 2.8. Period matrices in pseudonormal form and the Albanese map -- 3. Real abelian varieties -- 3.1. Real structures on complex tori -- 3.2. Equivalence classes for real structures on complex tori -- 3.3. Line bundles on complex tori with a real structure -- 3.4. Riemann bilinear relations for principally polarized real varieties -- 3.5. Moduli spaces of principally polarized real abelian varieties -- 3.6. Real theta functions -- 4. Applications to real curves -- 4.1. The Jacobian of a real curve -- 4.2. Real theta-characteristics -- 4.3. Examples -- 4.4. Moduli spaces and the theorem of Torelli -- 4.5. Singular curves -- References -- Appendix -- Mario Raimondo's contributions to real geometry -- Mario Raimondo's contributions to computer algebra. | |
520 | _aNo detailed description available for "Lectures in Real Geometry". | ||
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aGeometry, Analytic. | |
650 | 0 | _aGeometry, Algebraic. | |
655 | 4 | _aElectronic books. | |
776 | 0 | 8 |
_iPrint version: _aBroglia, Fabrizio _tLectures in Real Geometry _dBerlin/Boston : Walter de Gruyter GmbH,c1996 _z9783110150957 |
797 | 2 | _aProQuest (Firm) | |
830 | 3 | _aDe Gruyter Expositions in Mathematics Series | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3040487 _zClick to View |
999 |
_c64175 _d64175 |