000 03290nam a22004453i 4500
001 EBC5571103
003 MiAaPQ
005 20240724113422.0
006 m o d |
007 cr cnu||||||||
008 240724s2018 xx o ||||0 eng d
020 _a9781470448196
_q(electronic bk.)
020 _z9781470429638
035 _a(MiAaPQ)EBC5571103
035 _a(Au-PeEL)EBL5571103
035 _a(OCoLC)1042567976
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQB311 .L56 2018
082 0 _a526.32
100 1 _aLin, Francesco.
245 1 2 _aA Morse-Bott Approach to Monopole Floer Homology and the Triangulation Conjecture.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2018.
264 4 _c©2018.
300 _a1 online resource (174 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society Series ;
_vv.255
505 0 _aCover -- Title page -- Chapter 1. Introduction -- Chapter 2. Basic setup -- 2.1. The monopole equations -- 2.2. Blowing up the configuration spaces -- 2.3. Completion and slices -- 2.4. Perturbations -- Chapter 3. The analysis of Morse-Bott singularities -- 3.1. Hessians and Morse-Bott singularities -- 3.2. Moduli spaces of trajectories -- 3.3. Transversality -- 3.4. Compactness and finiteness -- 3.5. Gluing -- 3.6. The moduli space on a cobordism -- Chapter 4. Floer homology for Morse-Bott singularities -- 4.1. Homology of smooth manifolds via stratified spaces -- 4.2. Floer homology -- 4.3. Invariance and functoriality -- Chapter 5. \Pin-monopole Floer homology -- 5.1. An involution in the theory -- 5.2. Equivariant perturbations and Morse-Bott transversality -- 5.3. Invariant chains and Floer homology -- 5.4. Some computations -- 5.5. Manolescu's invariant and the Triangulation conjecture -- Bibliography -- Back Cover.
520 _aIn the present work the author generalizes the construction of monopole Floer homology due to Kronheimer and Mrowka to the case of a gradient flow with Morse-Bott singularities. Focusing then on the special case of a three-manifold equipped equipped with a {\rm spin}^c structure which is isomorphic to its conjugate, the author defines the counterpart in this context of Manolescu's recent Pin(2)-equivariant Seiberg-Witten-Floer homology. In particular, the author provides an alternative approach to his disproof of the celebrated Triangulation conjecture.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aTriangulation.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aLin, Francesco
_tA Morse-Bott Approach to Monopole Floer Homology and the Triangulation Conjecture
_dProvidence : American Mathematical Society,c2018
_z9781470429638
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society Series
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5571103
_zClick to View
999 _c6263
_d6263