000 | 03290nam a22004453i 4500 | ||
---|---|---|---|
001 | EBC5571103 | ||
003 | MiAaPQ | ||
005 | 20240724113422.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2018 xx o ||||0 eng d | ||
020 |
_a9781470448196 _q(electronic bk.) |
||
020 | _z9781470429638 | ||
035 | _a(MiAaPQ)EBC5571103 | ||
035 | _a(Au-PeEL)EBL5571103 | ||
035 | _a(OCoLC)1042567976 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQB311 .L56 2018 | |
082 | 0 | _a526.32 | |
100 | 1 | _aLin, Francesco. | |
245 | 1 | 2 | _aA Morse-Bott Approach to Monopole Floer Homology and the Triangulation Conjecture. |
250 | _a1st ed. | ||
264 | 1 |
_aProvidence : _bAmerican Mathematical Society, _c2018. |
|
264 | 4 | _c©2018. | |
300 | _a1 online resource (174 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aMemoirs of the American Mathematical Society Series ; _vv.255 |
|
505 | 0 | _aCover -- Title page -- Chapter 1. Introduction -- Chapter 2. Basic setup -- 2.1. The monopole equations -- 2.2. Blowing up the configuration spaces -- 2.3. Completion and slices -- 2.4. Perturbations -- Chapter 3. The analysis of Morse-Bott singularities -- 3.1. Hessians and Morse-Bott singularities -- 3.2. Moduli spaces of trajectories -- 3.3. Transversality -- 3.4. Compactness and finiteness -- 3.5. Gluing -- 3.6. The moduli space on a cobordism -- Chapter 4. Floer homology for Morse-Bott singularities -- 4.1. Homology of smooth manifolds via stratified spaces -- 4.2. Floer homology -- 4.3. Invariance and functoriality -- Chapter 5. \Pin-monopole Floer homology -- 5.1. An involution in the theory -- 5.2. Equivariant perturbations and Morse-Bott transversality -- 5.3. Invariant chains and Floer homology -- 5.4. Some computations -- 5.5. Manolescu's invariant and the Triangulation conjecture -- Bibliography -- Back Cover. | |
520 | _aIn the present work the author generalizes the construction of monopole Floer homology due to Kronheimer and Mrowka to the case of a gradient flow with Morse-Bott singularities. Focusing then on the special case of a three-manifold equipped equipped with a {\rm spin}^c structure which is isomorphic to its conjugate, the author defines the counterpart in this context of Manolescu's recent Pin(2)-equivariant Seiberg-Witten-Floer homology. In particular, the author provides an alternative approach to his disproof of the celebrated Triangulation conjecture. | ||
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aTriangulation. | |
655 | 4 | _aElectronic books. | |
776 | 0 | 8 |
_iPrint version: _aLin, Francesco _tA Morse-Bott Approach to Monopole Floer Homology and the Triangulation Conjecture _dProvidence : American Mathematical Society,c2018 _z9781470429638 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aMemoirs of the American Mathematical Society Series | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5571103 _zClick to View |
999 |
_c6263 _d6263 |