000 03971nam a22005293i 4500
001 EBC3020247
003 MiAaPQ
005 20240729124135.0
006 m o d |
007 cr cnu||||||||
008 240724s2010 xx o ||||0 eng d
020 _a9781616683740
_q(electronic bk.)
020 _z9781616681708
035 _a(MiAaPQ)EBC3020247
035 _a(Au-PeEL)EBL3020247
035 _a(CaPaEBR)ebr10676408
035 _a(OCoLC)923663273
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQH445.2 -- .D57 2010eb
082 0 _a572.8/633
100 1 _aMester, D.
245 1 0 _aDiscrete Optimization for TSP-like Genome Mapping Problems.
250 _a1st ed.
264 1 _aHauppauge :
_bNova Science Publishers, Incorporated,
_c2010.
264 4 _c©2010.
300 _a1 online resource (73 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aGenetics - Research and Issues
505 0 _aIntro -- DISCRETE OPTIMIZATION FOR SOME TSP-LIKE GENOME MAPPING PROBLEMS -- DISCRETE OPTIMIZATION FOR SOME TSP-LIKE GENOME MAPPING PROBLEMS -- CONTENTS -- PREFACE -- Chapter 1 GENERAL INTRODUCTION -- Chapter 2 GUIDED EVOLUTION STRATEGY ALGORITHM FOR CLASSIC TSP AS A BASIS FOR SOLVING THE GENETIC/GENOMIC TSP-LIKE PROBLEMS -- 2.1. Introduction -- 2.2. The Problem Solving Methodology -- 2.2.1. The Improvement Heuristics -- 2.2.2. Phase 1: A Guided Local Search Metaheuristic for the TSP -- 2.2.3. Phase 2: Attempting Small Mutations -- 2.3. Experimental results -- 2.3.1. The Problem Data and Parameter Setting -- 2.3.2. Analysis of Different Algorithm Configurations -- 2.3.3. Results for Standard TSP Benchmarks -- Chapter 3 MULTILOCUS GENETIC MAPPING -- 3.1. Introduction -- 3.2. Evolution Strategies For Combinatorial Optimization Problems -- 3.3. The Evolution Strategy Algorithm with Multi-Parametric Mutator (ES-MPM) -- 3.4. Guided Evolution Strategies (GES) for MGM -- 3.5. Experiments on MGM Using Simulated Datasets -- 3.6. An Approach to Increase the Map Reliability by Using Verification Process -- Chapter 4 MULTILOCUS CONSENSUS GENETIC MAPPING: FORMULATION, MODEL AND ALGORITHMS -- 4.1. Introduction -- 4.2. Main Idea of the Approach to Solve MCGM -- 4.3. Full Frame (FF) Algorithm for MCGM -- 4.4. Specific Conflicted Frames (SCF) Algorithm for MCGM -- Chapter 5 TSP-LIKE PROBLEM IN PHYSICAL MAPPING (PMP) -- 5.1. Introduction -- 5.1.1. The Model and Problem Formulation -- 5.1.2. Standard Methodology for Solving Physical Mapping Problem -- 5.1.3. An Alternative Approach to Contig Assembly -- 5.2. Reducing PMP to Standard TSP -- 5.2.1. Clustering Algorithm -- 5.2.2. Looking for Linear Topological Structure -- 5.2.3. Multipoint Ordering Using Global Optimization -- 5.2.4. Re-Sampling Verification of the Obtained Solution.
505 8 _a5.2.5. Merging of Sub-Contigs -- Chapter 6 CONCLUSIONS -- ACKNOWLEDGMENT -- APPENDIX. CHOOSING THRESHOLD Q VALUE FOR PRC CALCULATION -- References -- INDEX -- Blank Page.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aGene mapping -- Mathematical models.
650 0 _aMathematical optimization.
655 4 _aElectronic books.
700 1 _aRonin, D.
700 1 _aKorostishevsky, M.
700 1 _aKorol, A.
700 1 _aBraysy, Z.
700 1 _aRaa, W.
776 0 8 _iPrint version:
_aMester, D.
_tDiscrete Optimization for TSP-like Genome Mapping Problems
_dHauppauge : Nova Science Publishers, Incorporated,c2010
_z9781616681708
797 2 _aProQuest (Firm)
830 0 _aGenetics - Research and Issues
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3020247
_zClick to View
999 _c60776
_d60776