000 08472nam a22004933i 4500
001 EBC3018394
003 MiAaPQ
005 20240729124059.0
006 m o d |
007 cr cnu||||||||
008 240724s2010 xx o ||||0 eng d
020 _a9781617612305
_q(electronic bk.)
020 _z9781617611230
035 _a(MiAaPQ)EBC3018394
035 _a(Au-PeEL)EBL3018394
035 _a(CaPaEBR)ebr10660255
035 _a(OCoLC)923658253
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQD926 -- .Q375 2011eb
082 0 _a530.4/1
100 1 _aPuckermann, Beth E.
245 1 0 _aQuasicrystals :
_bTypes, Systems, and Techniques.
250 _a1st ed.
264 1 _aHauppauge :
_bNova Science Publishers, Incorporated,
_c2010.
264 4 _c©2010.
300 _a1 online resource (238 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aPhysics Research and Technology
505 0 _aIntro -- QUASICRYSTALS: TYPES, SYSTEMS, AND TECHNIQUES -- QUASICRYSTALS: TYPES, SYSTEMS, AND TECHNIQUES -- LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA -- CONTENTS -- PREFACE -- Chapter 1 Dominance of Magnetic Scattering in Al70Pd20+Xmn10-X (X = 0, 1 and 2), Al70Pd20Mn8(TM)2 (TM=Fe, Cr, Co and Ni) and Al70-Xbx Pd20Mn10 (X = 0, 0.5,1, 2 and 4) Stable Icosahedral Quasicrystals -- Abstract -- 1. Introduction -- 1.1. Phase Diagram -- 1.2. Magnetic Properties -- 1.3. Electrical Conductivity -- 2. Synthesis and Characterization Details -- 3. Part I -- 3.1. Results and Discussions -- 3.1.1. Structural Characterization -- 3.1.2. Magnetic Characterization -- 3.1.3.Conductivity Vs. Temperature (( -T) -- 3.1.3.1. ( -T Minimum -- 3.1.3.2. ( -T Maximum -- 3.1.3.3. Possible Origin of Observed ( -T Behavior -- 3.1.4. Magneto-Resistance -- 4. Part II -- 4.1. Results and Discussion -- 4.1.1. Structural Characterization -- 4.1.2. Magnetic Characterization -- 4.1.3. Conductivity Vs. Temperature -- 4.1.3.1. (( -T) Minimum -- 4.1.3.2. ( -T Maximum -- 4.1.3.3. Possible Origin of ( -T Behavior -- 4.1.4. Magneto-Resistance -- 5. Part III -- 5.1. Results and Discussion -- 5.1.1. Structural Characterization -- 5.1.2. Magnetic Characterization -- 5.1.3. Conductivity Vs. Temperature -- 5.1.4. Magneto-Resistance Measurement -- Conclusions -- Annexure I -- References -- Chapter 2 Logarithmic Periodicity - Properties, Tests and Uncertainties -- Abstract -- 1. Introduction -- 2. Model -- 3. Properties -- 3.1. Observations -- 3.1.1 -- 3.1.2. -- 3.1.3. -- 3.1.4. -- 3.1.5. -- 3.1.6. -- 3.2. Consequences -- 3.2.1. Indexation -- 3.2.2. The Compromise Spacing Effect -- 3.2.3 Dimensions -- 3.2.4. Enthalpy, the Driving Force -- 3.2.5. Angular Filtering -- 3.2.6. Double Diffraction -- 3.2.7. Electronic States -- 4. Evidence -- 4.1. Simplicity, Symmetry, and Sharpness.
505 8 _a4.2. Ranking of Beam Intensities and Calculated 'Structure Factors' -- 4.2.1. Logarithmic Periodicity -- 4.2.2. Double Diffraction in CBED -- 4.2.3. Bragg Anomaly in the 2-Fold Pattern -- 4.2.4. 2-Fold Pattern Orientation Anomaly -- 4.3. Diffraction Due to Clusters -- 4.4. HREM Images of Clusters and Superclusters -- 4.4.1. 'Structure Factor' For The HREM Model Structure -- 4.4.2. The 3-Fold Cluster Center in the 5-Fold Pattern -- 5. Uncertainties -- 5.1. Extension -- 5.2. Defects -- 5.2.1. The Aperiodic Cluster 'Hole' -- 5.2.2. The 'Hole' in Supercluster Order 1 -- 5.2.3. The 'Hole' in Superclusters of Higher Order -- 5.2.4. Glassy Structures -- 5.3. Limitation to Binary Systems -- 5.4. Quasicrystal Growth Mechanisms -- Conclusion -- Appendix 1. Quasi Bragg Diffraction -- Appendix 2. Lemmas, Proofs and Corollaries -- Reference -- Chapter 3 Vacancies in Quasicrystals -- Abstract -- 1. Introduction -- 2. Positron Annihilation Spectroscopy -- 2.1. Positons in Materials -- 2.2. Positron Lifetime Spectroscopy -- 2.3. Coincident Doppler Broadening Spectroscopy -- 2.4. Positron Diffusion Experiment -- 3. Structural Vacancy -- 3.1. Al-Based QC -- 3.2. CdYb Binary QC -- 3.3. MgZnSc QC -- 4. Structural Vacancy Concentration -- 4.1. Al-Based QC -- 4.2. CdYb Binary QC -- 4.3. MgZnSc QC -- 4. Detection Of High-Temperature Thermal Vacancy -- 5. Detection of Electron-Irradiation Induced Vacancy -- 6. Application of Positron to Structural Phase Transition -- Acknowledgments -- References -- Chapter 4 Structure Models of Quasicrystal Approximants Deduced from the Strong-Reflections Approach -- Abstract -- 1. Introduction -- 2. Why the Strong-Reflections Approach Works -- 2.1. Strong Reflections Determine the Atomic Positions -- 2.2. Similarity -- 3. Strong-Reflections Approach -- 3.1. Re-Indexing and Phasing -- 3.2. Identifying Atomic Positions.
505 8 _a3.3. Structure Verification -- 4. Extending to Ideal Quasicrystals -- References -- Chapter 5 Hydrogen Storage in Ti-Zr/Hf-Ni Quasicrystal and Related Crystal Powders Synthesized by Mechanical Alloying -- Abstract -- 1. Introduction -- 2. Hydrogen in Quasicrystals -- 3. Formation of the Quasicrystal Phase by Mechanical Alloying -- 3.1. Ti-Zr-Ni System -- 3.2. Ti-Hf-Ni System -- 4. Hydrogen Absorption -- 4.1. Ti-Zr-Ni System -- 4.2. Ti-Hf-Ni System -- 5. Hydrogen Desorption -- 5.1. Ti-Zr-Ni System -- 5.2. Ti-Hf-Ni System -- 6. Conclusion -- Acknowledgments -- References -- Chapter 6 Formation of Quasicrystals in Bulk Metallic Glasses and Their Effect on Mechanical Behavior -- Abstract -- 1. Introduction -- 2. Formation of Quasicrystalline Phase in the BMGs During Heat-Treatments -- 3. Morphology, Structure and Chemical Composition of Quasicrystals Formed During Annealing BMGs -- 4. Effect of Formation of Quasicrystalline Particles on the High-Temperature Creep of Metallic Glasses -- 5. Influence of Quasicrystalline Phase Formation on the Room Temperature Mechanical Behavior of BMGs -- 6. Conclusion -- Acknowledgments -- References -- Chapter 7 Surface Structure of Two-Fold Al-Ni-Co Decagonal Quasicrystal: Periodicity, Aperiodicity, Defects and Second Phase Structure -- Abstract -- 1. Introduction -- 2. Experimental -- 3. RESULTS and DISCUSSION -- 3.A. Step Structure of the 2-Fold Al-Ni-Co Decagonal Quasicrystal Surface -- 3.B. Atomic Scale Disordering on the 2 Fold Al-Ni-Co Surface -- 3.C. Atomic Structure of Second Phase Structures -- 4. Conclusion -- Acknowledgments -- References -- Chapter 8 Boundary Conditions for Beam Bending in Two-Dimensional Quasicrystals -- Abstract -- 1. Introduction -- 2. Plane Stress State of 2D Qcs -- 3. Necessary Conditions for A Decaying State -- 4. The Auxiliary Regular States.
505 8 _a5. The Appropriate Boundary Conditions for the Decaying State -- 5.1. Case A -- 5.3. Case B -- 5.3. Case C -- 5.4. Case E -- 5.5. Case F -- 5.6. Case G -- 6. The Appropriate Boundary Conditions for the Interior State -- 7. Conclusion -- Acknowledgments -- References -- Chapter 9 Microstructural Studies on Plate Sheets of Al-Li-Cu-Mg Alloy Reinforced with SiCp Metal Matrix Composites -- Abstract -- 1. Introduction -- 2. Experimental -- 3. Results and Discussion -- Conclusion -- Acknowledgments -- References -- Chapter 10 Morphologies of Icosahedral Quasicrystals in Al-Mn-Be-(Cu) Alloys -- Abstract -- Introduction -- Methods for Determining the Shapes of Quasicrystals -- Experimentally Determined Quasicrystalline Shapes -- Aims of the Present Work -- Experimental Work -- Results and Discussion -- Icosahedral Quasicrystalline Phase in Al-Mn-Be-X Alloys -- Morphology of the I-Phase in Melt-Spun Ribbons -- Shape of the Primary IQC in Alloys Cast Into a Copper Mould -- Eutectic IQC-Phase -- Presence of Other Phases -- Peculiar Dendritic Shape -- Conclusions -- References -- Index.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aQuasicrystals.
650 0 _aCrystals.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aPuckermann, Beth E.
_tQuasicrystals: Types, Systems, and Techniques
_dHauppauge : Nova Science Publishers, Incorporated,c2010
_z9781617611230
797 2 _aProQuest (Firm)
830 0 _aPhysics Research and Technology
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3018394
_zClick to View
999 _c59624
_d59624