000 | 11053nam a22004933i 4500 | ||
---|---|---|---|
001 | EBC5516054 | ||
003 | MiAaPQ | ||
005 | 20240724113337.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2018 xx o ||||0 eng d | ||
020 |
_a9783110533149 _q(electronic bk.) |
||
020 | _z9783110530971 | ||
035 | _a(MiAaPQ)EBC5516054 | ||
035 | _a(Au-PeEL)EBL5516054 | ||
035 | _a(OCoLC)1054067465 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA171 .B475 2018 | |
100 | 1 | _aBerkovich, Yakov G. | |
245 | 1 | 0 | _aGroups of Prime Power Order. Volume 6. |
250 | _a1st ed. | ||
264 | 1 |
_aBerlin/Boston : _bWalter de Gruyter GmbH, _c2018. |
|
264 | 4 | _c©2018. | |
300 | _a1 online resource (410 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aDe Gruyter Expositions in Mathematics Series ; _vv.65 |
|
505 | 0 | _aIntro -- Contents -- List of definitions and notations -- Preface -- 257 Nonabelian p-groups with exactly one minimal nonabelian subgroup of exponent & -- gt -- p -- 258 2-groups with some prescribed minimal nonabelian subgroups -- 259 Nonabelian p-groups, p & -- gt -- 2, all of whose minimal nonabelian subgroups are isomorphic to M< -- sub> -- p< -- /sub> -- < -- sup> -- 3< -- /sup> -- -- 260 p-groups with many modular subgroups M< -- sub> -- p< -- /sub> -- < -- sup> -- n< -- /sup> -- -- 261 Nonabelian p-groups of exponent & -- gt -- p with a small number of maximal abelian subgroups of exponent & -- gt -- p -- 262 Nonabelian p-groups all of whose subgroups are powerful -- 263 Nonabelian 2-groups G with C< -- sub> -- G< -- /sub> -- (x) ≤ H for all H ∈ Γ< -- sub> -- 1< -- /sub> -- and x ∈ H − Z(G) -- 264 Nonabelian 2-groups of exponent ≥ 16 all of whose minimal nonabelian subgroups, except one, have order 8 -- 265 p-groups all of whose regular subgroups are either absolutely regular or of exponent p -- 266 Nonabelian p-groups in which any two distinct minimal nonabelian subgroups with a nontrivial intersection are non-isomorphic -- 267 Thompson's A × B lemma -- 268 On automorphisms of some p-groups -- 269 On critical subgroups of p-groups -- 270 p-groups all of whose A< -- sub> -- k< -- /sub> -- -subgroups for a fixed k & -- gt -- 1 are metacyclic -- 271 Two theorems of Blackburn -- 272 Nonabelian p-groups all of whose maximal abelian subgroups, except one, are either cyclic or elementary abelian -- 273 Nonabelian p-groups all of whose noncyclic maximal abelian subgroups are elementary abelian -- 274 Non-Dedekindian p-groups in which any two nonnormal subgroups normalize each other. | |
505 | 8 | _a275 Nonabelian p-groups with exactly p normal closures of minimal nonabelian subgroups -- 276 2-groups all of whose maximal subgroups, except one, are Dedekindian -- 277 p-groups with exactly two conjugate classes of nonnormal maximal cyclic subgroups -- 278 Nonmetacyclic p-groups all of whose maximal metacyclic subgroups have index p -- 279 Subgroup characterization of some p-groups of maximal class and close to them -- 280 Nonabelian p-groups all of whose maximal subgroups, except one, are minimal nonmetacyclic -- 281 Nonabelian p-groups in which any two distinct minimal nonabelian subgroups have a cyclic intersection -- 282 p-groups with large normal closures of nonnormal subgroups -- 283 Nonabelian p-groups with many cyclic centralizers -- 284 Nonabelian p-groups, p & -- gt -- 2, of exponent & -- gt -- p< -- sup> -- 2< -- /sup> -- all of whose minimal nonabelian subgroups are of order p< -- sup> -- 3< -- /sup> -- -- 285 A generalization of Lemma 57.1 -- 286 Groups ofexponent p with many normal subgroups -- 287 p-groups in which the intersection of any two nonincident subgroups is normal -- 288 Nonabelian p-groups in which for every minimal nonabelian M & -- lt -- G and x ∈ G − M, we have C< -- sub> -- M< -- /sub> -- (x) = Z(M) -- 289 Non-Dedekindian p-groups all of whose maximal nonnormal subgroups are conjugate -- 290 Non-Dedekindian p-groups G with a noncyclic proper subgroup H such that each subgroup which is nonincident with H is normal in G -- 291 Nonabelian p-groups which are generated by a fixed maximal cyclic subgroup and any minimal nonabelian subgroup -- 292 Nonabelian p-groups generated by any two non-conjugate minimal nonabelian subgroups -- 293 Exercises -- 294 p-groups, p & -- gt -- 2, whose Frattini subgroup is nonabelian metacyclic. | |
505 | 8 | _a295 Any irregular p-group contains a non-isolated maximal regular subgroup -- 296 Non-Dedekindian p-groups all of whose nonnormal maximal cyclic subgroups are C-equivalent -- 298 Non-Dedekindian p-groups all of whose subgroups of order ≤ p< -- sup> -- s< -- /sup> -- (s ≥ 1 fixed) are normal -- 299 On p'-automorphisms of p-groups -- 300 On p-groups all of whose maximal subgroups of exponent p are normal and have order p< -- sup> -- p< -- /sup> -- -- 301 p-groups of exponent & -- gt -- p containing & -- lt -- p maximal abelian subgroups of exponent & -- gt -- p -- 302 Alternate proof of Theorem 109.1 -- 303 Nonabelian p-groups of order & -- gt -- p< -- sup> -- 4< -- /sup> -- all of whose subgroups of order p< -- sup> -- 4< -- /sup> -- are isomorphic -- 304 Non-Dedekindian p-groups in which each nonnormal subgroup has a cyclic complement in its normalizer -- 305 Nonabelian p-groups G all of whose minimal nonabelian subgroups M satisfy Z(M) ≤ Z(G) -- 306 Nonabelian 2-groups all of whose maximal subgroups, except one, are quasi-Hamiltonian or abelian -- 307 Nonabelian p-groups, p & -- gt -- 2, all of whose maximal subgroups, except one, are quasi-Hamiltonian or abelian -- 308 Nonabelian p-groups with an elementary abelian intersection of any two distinct maximal abelian subgroups -- 309 Minimal non-p-central p-groups -- 310 Nonabelian p-groups in which each element in any minimal nonabelian subgroup is half-central -- 311 Nonabelian p-groups G of exponent p in which C< -- sub> -- G< -- /sub> -- (x) = & -- lt -- x& -- gt -- G for all noncentral x ∈ G -- 312 Nonabelian 2-groups all of whose minimal nonabelian subgroups, except one, are isomorphic to M< -- sub> -- 2< -- /sub> -- (2, 2) = & -- lt -- a, b / a< -- sup> -- 4< -- /sup> -- = b<. | |
505 | 8 | _asup> -- 4< -- /sup> -- = 1, a< -- sup> -- b< -- /sup> -- = a< -- sup> -- −1< -- /sup> -- & -- gt -- -- 313 Non-Dedekindian 2-groups all of whose maximal Dedekindian subgroups have index 2 -- 314 Theorem of Glauberman-Mazza on p-groups with a nonnormal maximal elementary abelian subgroup of order p< -- sup> -- 2< -- /sup> -- -- 315 p-groups with some non-p-central maximal subgroups -- 316 Nonabelian p-groups, p & -- gt -- 2, of exponent & -- gt -- p< -- sup> -- 3< -- /sup> -- all of whose minimal nonabelian subgroups, except one, have order p< -- sup> -- 3< -- /sup> -- -- 317 Nonabelian p-groups, p & -- gt -- 2, all of whose minimal nonabelian subgroups are isomorphic to M< -- sub> -- p< -- /sub> -- (2, 2) -- 318 Nonabelian p-groups, p & -- gt -- 2, of exponent & -- gt -- p< -- sup> -- 2< -- /sup> -- all of whose minimal nonabelian subgroups, except one, are isomorphic to M< -- sub> -- p< -- /sub> -- (2, 2) -- 319 A new characterization of p-central p-groups -- 320 Nonabelian p-groups with exactly one non-p-central minimal nonabelian subgroup -- 321 Nonabelian p-groups G in which each element in G − Φ(G) is half-central -- 322 Nonabelian p-groups G such that C< -- sub> -- G< -- /sub> -- (H) = Z(G) for any nonabelian H ≤ G -- 323 Nonabelian p-groups that are not generated by its noncyclic abelian subgroups -- 324 A separation of metacyclic and nonmetacyclic minimal nonabelian subgroups in nonabelian p-groups -- 325 p-groups which are not generated by their nonnormal subgroups, 2 -- 326 Nonabelian p-groups all of whose maximal abelian subgroups are normal -- Appendix 110 Non-absolutely regular p-groups all of whose maximal absolutely regular subgroups have index p -- Appendix 111 Nonabelian p-groups of exponent & -- gt. | |
505 | 8 | _ap all of whose maximal abelian subgroups of exponent & -- gt -- p are isolated -- Appendix 112 Metacyclic p-groups with an abelian maximal subgroup -- Appendix 113 Nonabelian p-groups with a cyclic intersection of any two distinct maximal abelian subgroups -- Appendix 114 An analog of Thompson's dihedral lemma -- Appendix 115 Some results from Thompson' papers and the Odd Order paper -- Appendix 116 On normal subgroups of a p-group -- Appendix 117 Theorem of Mann -- Appendix 118 On p-groups with given isolated subgroups -- Appendix 119 Two-generator normal subgroups of a p-group G that contained in Φ(G) are metacyclic -- Appendix 120 Alternate proofs of some counting theorems -- Appendix 121 On p-groups of maximal class -- Appendix 122 Criteria of regularity -- Appendix 123 Nonabelian p-groups in which any two nonincident subgroups have an abelian intersection -- Appendix 124 Characterizations of the p-groups of maximal class and the primary ECF-groups -- Appendix 125 Nonabelian p-groups all of whose proper nonabelian subgroups have exponent p -- Appendix 126 On p-groups with abelian automorphism groups -- Appendix 127 Alternate proof of Proposition 1.23 -- Appendix 128 Alternate proof of the theorem of Passman on p-groups all of whose subgroups of order ≤ p< -- sup> -- s< -- /sup> -- (s ≥ 1 is fixed) are normal -- Appendix 129 Alternate proofs of Theorems 309.1 and 309.2 on minimal non-p-central p-groups -- Appendix 130 Non-Dedekindian p-groups all of whose nonnormal maximal cyclic subgroups are conjugate -- Appendix 131 A characterization of some 3-groups of maximal class -- Appendix 132 Alternate approach to classification of minimal non-p-central p-groups -- Appendix 133 Nonabelian p-groups all of whose minimal nonabelian subgroups are isomorphic to Mp(n, n) or M< -- sub> -- p< -- /sub> -- (n, n, 1) for a fixed natural n &. | |
505 | 8 | _agt. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aFinite groups. | |
655 | 4 | _aElectronic books. | |
700 | 1 | _aJanko, Zvonimir. | |
776 | 0 | 8 |
_iPrint version: _aBerkovich, Yakov G. _tGroups of Prime Power Order. Volume 6 _dBerlin/Boston : Walter de Gruyter GmbH,c2018 _z9783110530971 |
797 | 2 | _aProQuest (Firm) | |
830 | 3 | _aDe Gruyter Expositions in Mathematics Series | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5516054 _zClick to View |
999 |
_c5106 _d5106 |