000 | 05302nam a22004573i 4500 | ||
---|---|---|---|
001 | EBC1771572 | ||
003 | MiAaPQ | ||
005 | 20240729123007.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2013 xx o ||||0 eng d | ||
020 |
_a9781118400753 _q(electronic bk.) |
||
035 | _a(MiAaPQ)EBC1771572 | ||
035 | _a(Au-PeEL)EBL1771572 | ||
035 | _a(CaPaEBR)ebr10915810 | ||
035 | _a(OCoLC)889675019 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA246 -- .C69 2013eb | |
082 | 0 | _a512.723 | |
100 | 1 | _aCox, David A. | |
245 | 1 | 0 |
_aPrimes of the Form X2+ny2 : _bFermat, Class Field Theory, and Complex Multiplication. |
250 | _a2nd ed. | ||
264 | 1 |
_aNewark : _bJohn Wiley & Sons, Incorporated, _c2013. |
|
264 | 4 | _c©2013. | |
300 | _a1 online resource (378 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aPure and Applied Mathematics: a Wiley Series of Texts, Monographs and Tracts Series ; _vv.119 |
|
505 | 0 | _aCover -- Title Page -- Copyright -- Contents -- Preface to the First Edition -- Preface to the Second Edition -- Notation -- Introduction -- Chapter One: From Fermat to Gauss -- 1. Fermat, Euler and Quadratic Reciprocity -- A. Fermat -- B. Euler -- C. P = x2 + ny2 and Quadratic Reciprocity -- D. Beyond Quadratic Reciprocity -- E. Exercises -- 2. Lagrange, Legendre and Quadratic Forms -- A. Quadratic Forms -- B. P = x2 + ny2 and Quadratic Forms -- C. Elementary Genus Theory -- D. Lagrange and Legendre -- E. Exercises -- 3. Gauss, Composition and Genera -- A. Composition and the Class Group -- B. Genus Theory -- C. P = x2 + ny2 and Euler's Convenient Numbers -- D. Disquisitiones Arithmeticae -- E. Exercises -- 4. Cubic and Biquadratic Reciprocity -- A. Z[w] and Cubic Reciprocity -- B. Z[i] and Biquadratic Reciprocity -- C. Gauss and Higher Reciprocity -- D. Exercises -- Chapter Two: Class Field Theory -- 5. The Hilbert Class Field and P = x2 + ny2 -- A. Number Fields -- B. Quadratic Fields -- C. The Hilbert Class Field -- D. Solution of P = x2 + ny2 for Infinitely Many n -- E. Exercises -- 6. The Hilbert Class Field and Genus Theory -- A. Genus Theory for Field Discriminants -- B. Applications to the Hilbert Class Field -- 7. Orders in Imaginary Quadratic Fields -- A. Orders in Quadratic Fields -- B. Orders and Quadratic Forms -- C. Ideals Prime to the Conductor -- D. The Class Number -- E. Exercises -- 8. Class Field Theory and the Cebotarev Density Theorem -- A. The Theorems of Class Field Theory -- B. The Čebotarev Density Theorem -- C. Norms and Ideles -- D. Exercises -- 9. Ring Class Fields and p = x2 + ny2 -- A. Solution of p = x2 + ny2 for All n -- B. The Ring Class Fields of Z[√-27] and Z[√-64] -- C. Primes Represented by Positive Definite Quadratic Forms -- D. Ring Class Fields and Generalized Dihedral Extensions -- E. Exercises. | |
505 | 8 | _aChapter Three: Complex Multiplication -- 10. Elliptic Functions and Complex Multiplication -- A. Elliptic Functions and the Weierstrass r-function -- B. The J-invariant of a Lattice -- C. Complex Multiplication -- D. Exercises -- 11. Modular Functions and Ring Class Fields -- A. The J-function -- B. Modular Functions for Γo(m) -- C. The Modular Equation Φm(x, y) -- D. Complex Multiplication and Ring Class Fields -- E. Exercises -- 12. Modular Functions and Singular J-invariants -- A. The Cube Root of the J-function -- B. The Weber Functions -- C. J-invariants of Orders of Class Number 1 -- D. Weber's Computation of J (√-14) -- E. Imaginary Quadratic Fields of Class Number 1 -- F. Exercises -- 13. The Class Equation -- A. Computing the Class Equation -- B. Computing the Modular Equation -- C. Theorems of Deuring, Gross and Zagier -- D. Exercises -- Chapter Four: Additional Topics -- 14. Elliptic Curves -- A. Elliptic Curves and Weierstrass Equations -- B. Complex Multiplication and Elliptic Curves -- C. Elliptic Curves over Finite Fields -- D. Elliptic Curve Primality Tests -- E. Exercises -- 15. Shimura Reciprocity -- A. Modular Functions and Shimura Reciprocity -- B. Extended Ring Class Fields -- C. Shimura Reciprocity for Extended Ring Class Fields -- D. Shimura Reciprocity for Ring Class Fields -- E. The Idelic Approach -- F. Exercises -- References -- Additional References -- A. References Added to the Text -- B. Further Reading for Chapter One -- C. Further Reading for Chapter Two -- D. Further Reading for Chapter Three -- E. Further Reading for Chapter Four -- Index. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aNumbers, Prime. | |
650 | 0 | _aMathematics. | |
655 | 4 | _aElectronic books. | |
776 | 0 | 8 |
_iPrint version: _aCox, David A. _tPrimes of the Form X2+ny2 _dNewark : John Wiley & Sons, Incorporated,c2013 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aPure and Applied Mathematics: a Wiley Series of Texts, Monographs and Tracts Series | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=1771572 _zClick to View |
999 |
_c39684 _d39684 |