000 | 07895nam a22005053i 4500 | ||
---|---|---|---|
001 | EBC1753383 | ||
003 | MiAaPQ | ||
005 | 20240729122936.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2014 xx o ||||0 eng d | ||
020 |
_a9783527649716 _q(electronic bk.) |
||
020 | _z9783527327652 | ||
035 | _a(MiAaPQ)EBC1753383 | ||
035 | _a(Au-PeEL)EBL1753383 | ||
035 | _a(CaPaEBR)ebr10899808 | ||
035 | _a(CaONFJC)MIL631995 | ||
035 | _a(OCoLC)885123153 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aRS201.N35 -- .F758 2014eb | |
082 | 0 | _a530.44 | |
100 | 1 | _aFritzsche, Wolfgang. | |
245 | 1 | 0 | _aMolecular Plasmonics. |
250 | _a2nd ed. | ||
264 | 1 |
_aNewark : _bJohn Wiley & Sons, Incorporated, _c2014. |
|
264 | 4 | _c©2014. | |
300 | _a1 online resource (188 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
505 | 0 | _aIntro -- Molecular Plasmonics -- Contents -- Foreword -- Chapter 1 Introduction -- References -- Chapter 2 Plasmonic Effects -- 2.1 Electrical Conductivity in Metal -- 2.1.1 Drude Model -- 2.1.2 Drude-Lorentz Model -- 2.1.3 Drude-Sommerfeld Model -- 2.2 Optical Properties and Dielectric Constant -- 2.3 Plasmons -- 2.4 Volume Plasmons -- 2.5 Surface Plasmons and Applications in Life Sciences -- 2.5.1 Surface Plasmons in a Flat Metallic Film -- 2.5.2 Biosensor Applications -- 2.6 Localized Surface Plasmon -- 2.6.1 LSP in Spherical Nanoparticles -- 2.6.2 LSP in Nanorods -- 2.6.3 LSP in Other Shapes -- 2.6.4 Influence of Environment on LSPR -- 2.6.5 Effects of Other Parameters on Resonance -- 2.6.5.1 Composition -- 2.6.5.2 Charge -- 2.6.5.3 Neighboring Particles -- 2.6.6 Field Enhancement, Damping, Dephasing Time, Line Width -- 2.7 Combination of SPR and LSPR Approaches -- 2.8 Nanoholes -- 2.8.1 Nanoholes in Plasmonically Active Metal Films -- 2.8.1.1 Arrays -- 2.8.1.2 Single Holes -- 2.8.2 Nanoholes in Other Materials -- 2.9 Enhanced Spectroscopies -- 2.9.1 Metal Enhanced Fluorescence -- 2.9.2 Enhanced Raman Scattering -- 2.9.2.1 Raman Spectroscopy -- 2.9.2.2 SERS -- 2.9.2.3 TERS -- 2.9.2.4 SEIRA -- References -- Chapter 3 Nanofabrication of Metal Structures -- 3.1 Introduction -- 3.2 Nanofabrication: Top-Down -- 3.2.1 Lithography -- 3.2.1.1 Thin Film Technology and Adhesion Layer -- 3.2.1.2 Optical Lithography -- 3.2.1.3 Electron Beam Lithography (EBL) -- 3.2.1.4 Focused Ion Beam (FIB) -- 3.2.2 Modern Nanofabrication Techniques -- 3.2.2.1 Scanning Probe Techniques (STM, AFM, SNOM, Dip pen) -- 3.2.2.2 Soft Lithography -- 3.2.2.3 Nanoimprinting -- 3.2.2.4 Nanostructure Lithography -- 3.2.2.5 Release of Surface-Bound Nanostructures into Solution -- 3.3 Bottom-Up Approaches -- 3.3.1 Physical: Gas-Phase Based Growth (Aerosol Process). | |
505 | 8 | _a3.3.1.1 Mechanism of Particle Formation -- 3.3.1.2 Evaporation/Condensation and Island Film Preparation -- 3.3.1.3 Laser Ablation -- 3.3.2 Chemical: Condensed-Phase Fabrication -- 3.3.2.1 Introduction -- 3.3.2.2 Mechanism of Particle Generation -- 3.3.2.3 Stability of Small Metal Clusters -- 3.3.2.4 Stabilization -- 3.3.2.5 Single-Phase Synthetic Approaches -- 3.3.2.6 Two-Phase Synthesis -- 3.3.2.7 Synthesis in Confined Microenvironments -- 3.3.2.8 Size Control by Synthesis -- 3.3.2.9 Layered and/or Mixed Composition -- 3.3.2.10 Shape Control: Anisotropic Structures -- 3.3.2.11 Shape Control: Hard and Soft Templating -- 3.3.2.12 Enzyme-Mediated Nanoparticle Formation and Growth -- 3.3.2.13 Biosynthesis -- 3.3.2.14 Chemical: Solid-Phase Fabrication -- 3.4 Post-Processing, Combination, and Integration -- 3.4.1 Increased Monodispersity by Wet-Chemical Post-treatment -- 3.4.2 Radiation-Based Post-Processing for Size Tailoring -- 3.4.3 Multifunctional Particles -- 3.4.4 Integration -- References -- Chapter 4 The Molecular World -- 4.1 Interaction and Forces between Molecules and Substrates -- 4.2 Self-assembly Monolayer (SAM) -- 4.3 DNA -- 4.3.1 DNA-Attachment to Plasmonic Nanoparticles -- 4.3.2 Defined Stochiometry DNA-Nanoparticle -- 4.4 Peptides and Proteins -- 4.5 Bioassay Types and Formats -- 4.6 Nanomedicine: Cell-Nanoparticle Interaction -- References -- Chapter 5 Measurement and Characterization Techniques -- 5.1 Parameters of Interest -- 5.2 Far-Field Optical Techniques -- 5.2.1 Optical Dark-Field Microscopy in Combination with Spectroscopy -- 5.2.2 Extinction Spectroscopy -- 5.2.3 Evanescent Field Illumination -- 5.2.4 Other Light Scattering Approaches -- 5.2.5 Fluorescence Microscopy -- 5.2.6 Optical Imaging Window -- 5.2.7 Special Optical Microscopic Techniques -- 5.3 Near-Field Optical Techniques. | |
505 | 8 | _a5.3.1 Scanning Near-Field Optical Microscopy (SNOM) -- 5.3.2 Enhanced Spectroscopies -- 5.3.3 Layer-by-Layer Method -- 5.3.4 Use of Photosensitive Molecules -- 5.4 High-Resolution Microscopy -- 5.4.1 Transmission Electron Microscopy (TEM) -- 5.4.2 Scanning Electron Microscopy (SEM) -- 5.4.3 TEM-Based Plasmon Imaging -- 5.4.4 Scanning Probe Techniques -- References -- Chapter 6 Molecular Plasmonics: Life Sciences Applications -- 6.1 Marker -- 6.1.1 Macroscopic Detection -- 6.1.2 Microscopic Dark Field (Scattering) Contrast -- 6.1.2.1 Comparison with Fluorescence -- 6.1.2.2 Scattering Labels for Microarray Detection -- 6.1.2.3 Single-Particle Labels -- 6.1.3 Photothermal Imaging -- 6.1.4 Photoacoustic Imaging -- 6.1.5 Fluorescent Particles -- 6.1.6 Other Plasmonic Labels -- 6.2 Sensor -- 6.2.1 Plasmonic Nanoparticle Sensor -- 6.2.2 Sensitivity -- 6.2.3 Comparison SPR-LSPR -- 6.2.4 LSPR Sensing of Refractive Index of a Homogeneous Environment (Bulk Refractive Index Sensing) -- 6.2.5 Based on Change in Interparticle Distance -- 6.2.5.1 Aggregation Assay -- 6.2.5.2 Dissociation Assay -- 6.2.5.3 Molecular Ruler -- 6.2.5.4 Strain Sensor -- 6.2.6 Molecular Layer (Molecular Refractive Index Sensing) -- 6.2.6.1 Ensemble Sensors -- 6.2.6.2 Single-Particle Sensorics -- 6.2.6.3 Ensemble versus Single-Particle Measurements -- 6.2.6.4 Parallelization of (Single) Particle LSPR Sensoric -- 6.2.7 Nanohole Sensing -- 6.3 Local Field Control by Plasmonic Nanostructures -- 6.3.1 Fluorescence Quenching and FRET -- 6.3.2 Plasmonic Resonance Energy Transfer (PRET) -- 6.3.3 Fluorescence Enhancement -- 6.3.4 Surface-Enhanced Raman Scattering (SERS) -- 6.3.4.1 Surface-Enhanced Raman Scattering (SERS) for Analyte Detection -- 6.3.4.2 SERS Label -- 6.3.4.3 Tip-Enhanced Raman Scattering (TERS) -- 6.4 Light-Induced Manipulation -- 6.4.1 Nanoantenna-Effect -- 6.4.1.1 Mechanism. | |
505 | 8 | _a6.4.1.2 Thermal DNA Analysis -- 6.4.1.3 Hyperthermal Treatment -- 6.4.1.4 Other Thermal Manipulation at the Tissue Level -- 6.4.1.5 Manipulation at the Sub-cellular Level -- 6.4.2 Release of Drugs and Other Active Molecules -- References -- Chapter 7 Molecular Plasmonics for Nanooptics and Nanotechnology -- 7.1 Plasmonic Lithography -- 7.2 Nanopositioning for Nanooptics -- 7.3 Nanopositioning for Ultrasensitive Bioanalytics -- 7.4 Integration of Molecular Constructs -- 7.5 Plasmonic Properties Control by Using Molecular Assembly -- References -- Index -- EULA. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aNanoparticles. | |
650 | 0 | _aPhotonics. | |
650 | 0 | _aPlasmons (Physics). | |
655 | 4 | _aElectronic books. | |
700 | 1 | _ade la Chapelle, Marc Lamy. | |
776 | 0 | 8 |
_iPrint version: _aFritzsche, Wolfgang _tMolecular Plasmonics _dNewark : John Wiley & Sons, Incorporated,c2014 _z9783527327652 |
797 | 2 | _aProQuest (Firm) | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=1753383 _zClick to View |
999 |
_c38814 _d38814 |