000 04184nam a22004813i 4500
001 EBC31253102
003 MiAaPQ
005 20240724115947.0
006 m o d |
007 cr cnu||||||||
008 240724s2020 xx o ||||0 eng d
020 _a9780750341783
_q(electronic bk.)
020 _z9780750322041
035 _a(MiAaPQ)EBC31253102
035 _a(Au-PeEL)EBL31253102
035 _a(OCoLC)1130295079
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aTA357.5.M43 D335 2020
082 0 _a620.1064
100 1 _aDabiri, Dana.
245 1 0 _aParticle Tracking Velocimetry.
250 _a1st ed.
264 1 _aBristol :
_bInstitute of Physics Publishing,
_c2020.
264 4 _c©2020.
300 _a1 online resource (211 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aIOP Ebooks Series
505 0 _aIntro -- Author biographies -- Dana Dabiri -- Charles Pecora -- Chapter 1 Introduction -- References -- Chapter 2 Experimental set-up -- 2.1 Tracer particles -- 2.1.1 Tracers in liquid flows -- 2.1.2 Tracers in subsonic gas flows -- 2.1.3 Tracers in supersonic flows -- 2.2 Illumination -- 2.3 Area/volume illumination optics -- 2.4 Camera -- References -- Chapter 3 Particle image identification -- 3.1 Non-overlapped particles -- 3.1.1 Threshold binarization -- 3.1.2 Centroid estimation -- 3.1.3 Gaussian estimation -- 3.2 Overlapped particles -- 3.2.1 Threshold binarization -- 3.2.2 Neural network particle identification -- 3.2.3 Particle mask correlation -- 3.2.4 Optical flow feature extraction -- 3.2.5 Linear model inversion -- 3.3 Particle identification comparison -- 3.3.1 Non-overlapped particle identification comparison -- 3.3.2 Overlapped particle identification comparison -- References -- Chapter 4 Identification of particles' spatial locations -- 4.1 Spatial location in 2D -- 4.2 Spatial localization in 3D -- 4.2.1 Photogrammetric PTV -- 4.2.2 Tomographic PTV -- 4.2.3 Synthetic aperture PTV -- 4.2.4 Plenoptic imaging -- 4.2.5 Holographic PTV -- 4.3 Optical distortions and calibration in PTV systems -- 4.3.1 2D calibration -- 4.3.2 Stereoscopic calibration -- 4.3.3 3D calibration -- References -- Chapter 5 Particle tracking techniques -- 5.1 Multi-frame approach -- 5.2 Cross correlation -- 5.3 Relaxation methods -- 5.4 Neural networks -- 5.5 Velocity gradient tensor -- 5.6 Polar-coordinate similarity -- 5.7 Optimization methods -- 5.7.1 Deterministic annealing -- 5.7.2 Variational approach -- 5.7.3 Genetic algorithms -- 5.7.4 Ant colony optimization -- 5.7.5 Fuzzy logic PTV -- 5.8 Delaunay tessellation methods -- 5.9 Voronoi diagram methods -- 5.10 Vision-based PTV -- 5.11 Statistical approach -- 5.12 Outlier detection -- References.
505 8 _aChapter 6 Combined tracking and localization for 3D PTV -- 6.1 Shake-the-box -- References -- Chapter 7 3D-PTV comparison -- References -- Chapter 8 Post-processing -- 8.1 Interpolation -- 8.2 Pressure calculation -- References -- Chapter 9 Conclusions -- References.
520 _aParticle tracking velocimetry (PTV) is one of the latest and most powerful flow visualization techniques, using numerous cameras to track flow tracers in two or three dimensions. This book provides a review of both experimental and computational aspects of PTV for academic and industrial researchers and engineers.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aParticle image velocimetry.
650 0 _aParticle tracking velocimetry.
655 4 _aElectronic books.
700 1 _aPecora, Charles.
776 0 8 _iPrint version:
_aDabiri, Dana
_tParticle Tracking Velocimetry
_dBristol : Institute of Physics Publishing,c2020
_z9780750322041
797 2 _aProQuest (Firm)
830 0 _aIOP Ebooks Series
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=31253102
_zClick to View
999 _c36801
_d36801