000 09189nam a22004813i 4500
001 EBC29191770
003 MiAaPQ
005 20240724115802.0
006 m o d |
007 cr cnu||||||||
008 240724s2020 xx o ||||0 eng d
020 _a9781624105814
_q(electronic bk.)
020 _z9781624105807
035 _a(MiAaPQ)EBC29191770
035 _a(Au-PeEL)EBL29191770
035 _a(OCoLC)1147706344
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aTL780
082 0 _a629.475
100 1 _aBellan, Josette.
245 1 0 _aHigh-Pressure Flows for Propulsion Applications.
250 _a1st ed.
264 1 _aReston :
_bAmerican Institute of Aeronautics & Astronautics,
_c2020.
264 4 _c©2020.
300 _a1 online resource (804 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aProgress in Astronautics and Aeronautics Series ;
_vv.260
505 0 _aIntro -- Title page -- Copyright -- Table of Contents -- Preface -- 1 Microgravity Research on Quasi-Steady and Unsteady Combustion of Fuel Droplet at High Pressures -- I. INTRODUCTION -- II. FUEL DROPLET EVAPORATION -- III. FUEL DROPLET COMBUSTION -- IV. CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- 2 Laboratory Experiments of High-Pressure Fluid Drops -- I. INTRODUCTION -- II. INTRODUCTION TO THERMODYNAMICS OF INTERFACES -- III. EXPERIMENTAL TEST RIG: A HIGH-PRESSURE APPARATUS FOR FALLING DROPLETS -- IV. OPTICAL TECHNIQUES: PROGRESS ON DROPLET CHARACTERIZATION AT HIGH PRESSURE -- V. RESULTS -- VI. ON THE LIMITS OF VLE FORMULATIONS -- VII. CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- 3 Optical Diagnostics for Sprays at High Pressure -- I. INTRODUCTION -- II. OPTICAL MEASUREMENTS AT HIGH PRESSURE AND TEMPERATURE -- III. WHITE-LIGHT IMAGING -- IV. LASER IMAGING -- V. TECHNIQUES THAT COULD POTENTIALLY BROADEN THE SCOPE OF MEASUREMENTS -- VI. OVERVIEW -- REFERENCES -- 4 Supercritical Coaxial Jet Disintegration -- NOMENCLATURE -- SUBSCRIPTS -- I. INTRODUCTION -- II. EXPERIMENTAL FACILITY -- III. WORKING FLUID AND EXPERIMENTAL TECHNIQUE -- IV. RESULTS -- V. CONCLUSIONS -- REFERENCES -- 5 High-Pressure Experiments Relevant to Rocket Propulsion -- I. INTRODUCTION -- II. BACKGROUND AND PAST EXPERIMENTS IN MODEL ROCKET COMBUSTORS -- III. MEASUREMENT AND DATA ANALYSIS OVERVIEW -- IV. MODAL DECOMPOSITION METHODS -- V. QUANTITATIVE OPTICAL COMPARISONS -- VI. SUMMARY AND CONCLUSIONS -- REFERENCES -- 6 Forced and Unforced Shear Coaxial Mixing and Combustion at Subcritical and Supercritical Pressures -- I. INTRODUCTION -- II. BACKGROUND: COAXIAL JET -- III. EXPERIMENTAL FACILITIES AND INSTRUMENTATION -- IV. RESULTS -- V. CONCLUSIONS -- REFERENCES -- 7 Measurement of Heat Transfer in Liquid Rocket Combustors -- NOMENCLATURE -- SUBSCRIPTS -- SUPERSCRIPTS.
505 8 _aI. INTRODUCTION -- II. HEAT-TRANSFER MEASUREMENT METHODOLOGIES -- III. EXAMPLES OF HEAT-FLUX MEASUREMENTS -- IV. DISCUSSION OF HEAT-FLUX MEASUREMENT APPROACHES -- REFERENCES -- 8 Characterization of Droplet Nucleation Inside Supercritical Ethylene Jets Using Small-Angle X-Ray Scattering Technique -- I. INTRODUCTION -- II. EXPERIMENTAL METHODS -- III. SMALL-ANGLE X-RAY SCATTERING -- IV. DATA REDUCTION -- V. RESULTS AND DISCUSSION -- VI. CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- 9 Empirical Fundamental Equations of State for Pure Fluids and Mixtures -- I. INTRODUCTION -- II. EQUATIONS OF STATE -- III. FITTING EQUATIONS OF STATE -- IV. PERFORMANCE OF EQUATIONS OF STATE AND FUTURE CHALLENGES -- V. CONCLUSION -- REFERENCES -- 10 Molecular Simulations to Research Supercritical Fuel Properties -- I. INTRODUCTION -- II. MOLECULAR APPROACH FOR RESEARCHING SUPERCRITICAL FLUIDS -- III. MC SIMULATIONS OF THE PHASE EQUILIBRIUM DIAGRAMS OF -- ALKANE/NITROGEN MIXTURES USING VARIOUS POTENTIALS -- IV. MD SIMULATIONS OF AN -- HEPTANE DROPLET VAPORIZING INTO NITROGEN AT VARIOUS AMBIENT TEMPERATURES AND PRESSURES -- ACKNOWLEDGMENT -- REFERENCES -- 11 Large Eddy Simulations of High-Pressure Jets: Effect of Subgrid-Scale Modeling -- I. INTRODUCTION -- II. GOVERNING EQUATIONS AND NUMERICAL METHOD -- III. NUMERICAL ASPECTS -- IV. CONFIGURATION, BOUNDARY CONDITIONS AND INITIAL CONDITIONS -- V. RESULTS AND DISCUSSION -- VI. SUMMARY AND CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- 12 High Pressure Flames with Multicomponent Transport -- I. INTRODUCTION -- II. NONIDEAL FLUIDS -- III. BINARY MIXING LAYERS -- IV. FREELY PROPAGATING PREMIXED FLAMES -- V. STRAINED FLAMES -- VI. TRANSCRITICAL DIFFUSION FLAMES -- VII. CONCLUSION -- REFERENCES -- 13 Large-Eddy Simulation of Cryogenic Jet Injection at Supercritical Pressures -- I. INTRODUCTION -- II. THERMODYNAMICS MODEL.
505 8 _aIII. CRYOGENIC SINGLE-COMPONENT INJECTION AT SUPERCRITICAL PRESSURE -- IV. CRYOGENIC BINARY COMPONENT INJECTION AT SUPERCRITICAL PRESSURE -- V. CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- 14 Detailed Modeling of Supercritical Jets and Flames -- I. INTRODUCTION -- II. FLUID PROPERTIES IN SUPERCRITICAL ENVIRONMENTS -- III. KINETIC MODELS FOR HIGH-PRESSURE COMBUSTION -- IV. METHODOLOGY FOR ROBUST AND ACCURATE SIMULATIONS OF SUPERCRITICAL FLUIDS WITH LARGE DENSITY CONTRASTS -- V. ROBUST SOLVERS FOR STIFF CHEMISTRY -- VI. LES OF LOX/GH2 SHEAR-COAXIAL JET FLAME AT SUPERCRITICAL PRESSURE -- VII. CONCLUSIONS -- REFERENCES -- 15 Modeling and Simulations of High-Pressure Practical Flows -- I. INTRODUCTION -- II. NUMERICAL TOOLS FOR HIGH-PRESSURE REACTING FLOW SIMULATION -- III. COUPLING REAL-GAS TABULATED THERMOCHEMISTRY AND COMPRESSIBLE LES SOLVER -- IV. SIMULATION OF REACTING AND NONREACTING TURBULENT FLOWS -- V. CONCLUSION -- ACKNOWLEDGMENTS -- APPENDIX A. AEXPRESSION OF THE HEAT CAPACITY AT CONSTANT PRESSURE ( -- APPENDIX B. 2-D CONVECTION OF A MIXTURE FRACTION POCKET [MIXT] -- APPENDIX C. COUPLING THE REAL-GAS TABULATED THERMOCHEMISTRY WITH A LOW-MACH CODE -- REFERENCES -- 16 Large-Eddy Simulation of Liquid Injection and Combustion Processes in High-Pressure Systems -- I. INTRODUCTION -- II. GOVERNING EQUATIONS AND SUBMODEL FORMULATIONS -- III. RESULTS AND DISCUSSION -- IV. SUMMARY AND CONCLUSIONS -- ACKNOWLEDGMENTS -- APPENDIX A. THERMODYNAMIC DERIVATIVES AS FUNCTION OF COMPRESSIBILITY FACTOR FOR THE CUBIC EQUATIONS OF STATE -- APPENDIX B. DEPARTURE FUNCTIONS FOR CUBIC EQUATIONS OF STATE -- REFERENCES -- 17 Simulation of the High-Pressure Combustion Process in Diesel Engines -- NOMENCLATURE -- SUPERSCRIPT -- SUBSCRIPT -- I. INTRODUCTION -- II. DIESEL SPRAY MODEL -- III. GOVERNING EQUATIONS FOR THE FLUID PHASE -- IV. COMBUSTION MODEL.
505 8 _aV. CONSTANT-VOLUME COMBUSTION CHAMBER VALIDATIONS -- VI. DIESEL ENGINE SIMULATIONS -- VII. SUMMARY AND CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- Index.
520 _aHigh-pressure flows occur in nature, in industrial processes and in manufactured devices but not in human personal experience which is limited to atmospheric pressure. In nature, high-pressure flows are found in petroleum reservoirs, at ocean depths, and in the atmospheres of planets such as Venus. In industry, the enhanced solubility that occurs at high pressures is used to extract certain chemical species; for example, the solubility of caffeine in supercritical carbon dioxide enables production of decaffeinated coffee and tea. Manufactured devices such as diesel engines and liquid rocket engines operate at pressures well above atmospheric pressure. How mixtures of chemical species behave under high-pressure conditions is described by thermodynamics. However, because thermodynamics cannot describe flows, thermodynamics must be coupled to concepts of motion and transport in order to construct a physical description characterizing all relevant processes in high-pressure flows. The chapters in this book describe observations and modeling of high-pressure flows encountered in aeronautics and astronautics. They have been selected to present the current understanding of high-pressure flows. By editorial intent, agreement between authors on all aspects of the high-pressure field of research was not sought as it was felt that revealing where disagreement exists on specific aspects indicates where the new research opportunities are. Experimental, theoretical and numerical studies are all represented in the chapters. Fundamental investigations are presented first, followed by practical studies.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aPropulsion systems.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aBellan, Josette
_tHigh-Pressure Flows for Propulsion Applications
_dReston : American Institute of Aeronautics & Astronautics,c2020
_z9781624105807
797 2 _aProQuest (Firm)
830 0 _aProgress in Astronautics and Aeronautics Series
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=29191770
_zClick to View
999 _c34210
_d34210