000 | 03818nam a22004333i 4500 | ||
---|---|---|---|
001 | EBC29002973 | ||
003 | MiAaPQ | ||
005 | 20240724115758.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2021 xx o ||||0 eng d | ||
020 |
_a9788770226257 _q(electronic bk.) |
||
020 | _z9788770226264 | ||
035 | _a(MiAaPQ)EBC29002973 | ||
035 | _a(Au-PeEL)EBL29002973 | ||
035 | _a(OCoLC)1289259031 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA351 | |
082 | 0 | _a515.5 | |
100 | 1 | _aKoranga, Bipin Singh. | |
245 | 1 | 0 | _aSpecial Functions and Their Application. |
250 | _a1st ed. | ||
264 | 1 |
_aAalborg : _bRiver Publishers, _c2021. |
|
264 | 4 | _c©2021. | |
300 | _a1 online resource (124 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
505 | 0 | _aFront Cover -- Special Functions and their Applications -- Contents -- Preface -- List of Tables -- 1 The Gamma Function -- 1.1 Definition of Gamma Function -- 1.2 Gamma Function and Some Relations -- 1.3 The Logarithmic Derivative of the Gamma Function -- 1.4 Asymptotic Representation of the Gamma Function for Large |z| -- 1.5 Definite Integrals Related to the Gamma Function -- 1.6 Exercises -- 2 The Probability Integral and Related Functions -- 2.1 The Probability Integral and its Basic Properties -- 2.2 Asymptotic Representation of Probability Integral for Large |z| -- 2.3 The Probability Integral of Imaginary Argument -- 2.4 The Probability Fresnel Integrals -- 2.5 Application to Probability Theory -- 2.6 Application to the Theory of Heat Conduction -- 2.7 Application to the Theory of Vibrations -- 2.8 Exercises -- 3 Spherical Harmonics Theory -- 3.1 Introduction -- 3.2 The Hypergeometric Equation and its Series Solution -- 3.3 Legendre Functions -- 3.4 Integral Representations of the Legendre Functions -- 3.5 Some Relations Satisfied by the Legendre Functions -- 3.6 Workskian of Pairs of Solutions of Legendre's Equation -- 3.7 Recurrence Relations for the Legendre Functions -- 3.8 Associated Legendre Functions -- 3.9 Exercises -- 4 Bessel Function -- 4.1 Bessel Functions -- 4.2 Generating Function -- 4.3 Recurrence Relations -- 4.4 Orthonormality -- 4.5 Application to the Optical Fiber -- 4.6 Exercises -- 5 Hermite Polynomials -- 5.1 Hermite Functions -- 5.2 Generating Function -- 5.3 Recurrence Relations -- 5.4 Rodrigues Formula -- 5.5 Orthogonality and Normalilty -- 5.6 Application to the Simple Harmonic Oscillator -- 5.7 Exercises -- 6 Laguerre Polynomials -- 6.1 Laguerre Functions -- 6.2 Generating Function -- 6.3 Recurrence Relations -- 6.4 Rodrigues Formula -- 6.5 Orthonormality -- 6.6 Application to the Hydrogen Atom. | |
505 | 8 | _a6.7 Associated Laguerre Polynomials -- 6.7.1 Properties of Associated Laguerre Polynomials -- 6.8 Exercises -- Bibliography -- Index -- About the Authors -- Back Cover. | |
520 | _aThis short text gives clear descriptions and explanations of the Gamma function, the Probability Integral and its related functions, Spherical Harmonics Theory, The Bessel function, Hermite polynomials and Laguerre polynomials. | ||
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aFunctions, Special. | |
655 | 4 | _aElectronic books. | |
776 | 0 | 8 |
_iPrint version: _aKoranga, Bipin Singh _tSpecial Functions and Their Application _dAalborg : River Publishers,c2021 _z9788770226264 |
797 | 2 | _aProQuest (Firm) | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=29002973 _zClick to View |
999 |
_c34092 _d34092 |