000 04108nam a22004813i 4500
001 EBC7104277
003 MiAaPQ
005 20240724115709.0
006 m o d |
007 cr cnu||||||||
008 240724s2015 xx o ||||0 eng d
020 _a9781118953686
_q(electronic bk.)
020 _z9781118953655
035 _a(MiAaPQ)EBC7104277
035 _a(Au-PeEL)EBL7104277
035 _a(OCoLC)1347025973
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA188 .S194 2016
082 0 _a512.9/434
100 1 _aSaff, Edward Barry.
245 1 0 _aFundamentals of Matrix Analysis with Applications.
250 _a1st ed.
264 1 _aNewark :
_bJohn Wiley & Sons, Incorporated,
_c2015.
264 4 _c©2015.
300 _a1 online resource (410 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aNew York Academy of Sciences Series
505 0 _aIntro -- Title Page -- Copyright Page -- Contents -- Preface -- PART I INTRODUCTION: THREE EXAMPLES -- Chapter 1 Systems of Linear Algebraic Equations -- 1.1 Linear Algebraic Equations -- 1.2 Matrix Representation of Linear Systems and the Gauss-Jordan Algorithm -- 1.3 The Complete Gauss Elimination Algorithm -- 1.4 Echelon Form and Rank -- 1.5 Computational Considerations -- 1.6 Summary -- Chapter 2 Matrix Algebra -- 2.1 Matrix Multiplication -- 2.2 Some Physical Applications of Matrix Operators -- 2.3 The Inverse and the Transpose -- 2.4 Determinants -- 2.5 Three Important Determinant Rules -- 2.6 Summary -- Group Projects for Part I -- A. LU Factorization -- B. Two-Point Boundary Value Problem -- C. Electrostatic Voltage -- D. Kirchhoff's Laws -- E. Global Positioning Systems -- F. Fixed-Point Methods -- PART II INTRODUCTION: THE STRUCTURE OF GENERAL SOLUTIONS TO LINEAR ALGEBRAIC EQUATIONS -- Chapter 3 Vector Spaces -- 3.1 General Spaces, Subspaces, and Spans -- 3.2 Linear Dependence -- 3.3 Bases, Dimension, and Rank -- 3.4 Summary -- Chapter 4 Orthogonality -- 4.1 Orthogonal Vectors and the Gram-Schmidt Algorithm -- 4.2 Orthogonal Matrices -- 4.3 Least Squares -- 4.4 Function Spaces -- 4.5 Summary -- Group Projects for Part II -- A. Rotations and Reflections -- B. Householder Reflectors -- C. Infinite Dimensional Matrices -- PART III INTRODUCTION: REFLECT ON THIS -- Chapter 5 Eigenvectors and Eigenvalues -- 5.1 Eigenvector Basics -- 5.2 Calculating Eigenvalues and Eigenvectors -- 5.3 Symmetric and Hermitian Matrices -- 5.4 Summary -- Chapter 6 Similarity -- 6.1 Similarity Transformations and Diagonalizability -- 6.2 Principle Axes and Normal Modes -- 6.3 Schur Decomposition and Its Implications -- 6.4 The Singular Value Decomposition -- 6.5 The Power Method and the QR Algorithm -- 6.6 Summary.
505 8 _aChapter 7 Linear Systems of Differential Equations -- 7.1 First-Order Linear Systems -- 7.2 The Matrix Exponential Function -- 7.3 The Jordan Normal Form -- 7.4 Matrix Exponentiation via Generalized Eigenvectors -- 7.5 Summary -- Group Projects for Part III -- A. Positive Definite Matrices -- B. Hessenberg Form -- C. Discrete Fourier Transform -- D. Construction of the SVD -- E. Total Least Squares -- F. Fibonacci Numbers -- Answers to Odd Numbered Exercises -- Index -- EULA.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aAlgebras, Linear.
650 0 _aEigenvalues.
650 0 _aMatrices.
650 0 _aOrthogonalization methods.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aSaff, Edward Barry
_tFundamentals of Matrix Analysis with Applications
_dNewark : John Wiley & Sons, Incorporated,c2015
_z9781118953655
797 2 _aProQuest (Firm)
830 0 _aNew York Academy of Sciences Series
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=7104277
_zClick to View
999 _c32995
_d32995