000 | 05087nam a22004453i 4500 | ||
---|---|---|---|
001 | EBC6450277 | ||
003 | MiAaPQ | ||
005 | 20240724114820.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2020 xx o ||||0 eng d | ||
020 |
_a9781000795912 _q(electronic bk.) |
||
020 | _z9788770225816 | ||
035 | _a(MiAaPQ)EBC6450277 | ||
035 | _a(Au-PeEL)EBL6450277 | ||
035 | _a(OCoLC)1229923914 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA200 .K673 2020 | |
082 | 0 | _a515.63 | |
100 | 1 | _aKoranga, Bipin Singh. | |
245 | 1 | 3 | _aAn Introduction to Tensor Analysis. |
250 | _a1st ed. | ||
264 | 1 |
_aMilton : _bRiver Publishers, _c2020. |
|
264 | 4 | _c©2020. | |
300 | _a1 online resource (127 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
505 | 0 | _aCover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Preface -- Syllabus -- Table of Contents -- 1: Introduction -- 1.1 Symbols Multi-Suffix -- 1.2 Summation Convention -- 2: Cartesian Tensor -- 2.1 Introduction -- 2.2 Transformation of Coordinates -- 2.3 Relations Between the Direction Cosines -- 2.4 Transformation of Velocity Components -- 2.5 First-Order Tensors -- 2.6 Second-Order Tensors -- 2.7 Notation for Tensors -- 2.8 Algebraic Operations on Tensors -- 2.8.1 Sum and Difference of Tensors -- 2.8.2 Product of Tensors -- 2.9 Quotient Law of Tensors -- 2.10 Contraction Theorem -- 2.11 Symmetric and Skew-Symmetric Tensor -- 2.12 Alternate Tensor -- 2.13 Kronecker Tensor -- 2.14 Relation Between Alternate and Kronecker Tensors -- 2.15 Matrices and Tensors of First and Second Orders -- 2.16 Product of Two Matrices -- 2.17 Scalar and Vector Inner Product -- 2.17.1 Two Vectors -- 2.17.2 Scalar Product -- 2.17.3 Vector Product -- 2.18 Tensor Fields -- 2.18.1 Gradient of Tensor Field -- 2.18.2 Divergence of Vector Point Function -- 2.18.3 Curl of Vector Point Function -- 2.19 Tensorial Formulation of Gauss's Theorem -- 2.20 Tensorial Formulation of Stoke's Theorem -- 2.21 Exercise -- 3: Tensor in Physics -- 3.1 Kinematics of Single Particle -- 3.1.1 Momentum -- 3.1.2 Acceleration -- 3.1.3 Force -- 3.2 Kinetic Energy and Potential Energy -- 3.3 Work Function and Potential Energy -- 3.4 Momentum and Angular Momentum -- 3.5 Moment of Inertia -- 3.6 Strain Tensor at Any Point -- 3.7 Stress Tensor at any Point P -- 3.7.1 Normal Stress -- 3.7.2 Simple Stress -- 3.7.3 Shearing Stress -- 3.8 Generalised Hooke's Law -- 3.9 Isotropic Tensor -- 3.10 Exercises -- 4: Tensor in Analytic Solid Geometry -- 4.1 Vector as Directed Line Segments -- 4.2 Geometrical Interpretation of the Sum of Two Vectors -- 4.3 Length and Angle between Two Vectors. | |
505 | 8 | _a4.4 Geometrical Interpretation of Scalar and Vector Products -- 4.4.1 Scalar Triple Product -- 4.4.2 Vector Triple Products -- 4.5 Tensor Formulation of Analytical Solid Geometry -- 4.5.1 Distance Between Two Points P(xi) and Q(yi) -- 4.5.2 Angle Between Two Lines with Direction Cosines -- 4.5.3 The Equation of Plane -- 4.5.4 Condition for Two Line Coplanar -- 4.6 Exercises -- 5: General Tensor -- 5.1 Curvilinear Coordinates -- 5.2 Coordinate Transformation Equation -- 5.3 Contravariant and Covariant Tensor -- 5.4 Contravariant Vector or Contravariant Tensor of Order-One -- 5.5 Covariant Vector or Covariant Tensor of Order-One -- 5.6 Mixed Second-Order Tensor -- 5.7 General Tensor of Any Order -- 5.8 Metric Tensor -- 5.9 Associate Contravariant Metric Tensor -- 5.10 Associate Metric Tensor -- 5.11 Christoffel Symbols of the First and Second-Kind -- 5.12 Covariant Derivative of a Covariant Vector -- 5.13 Covariant Derivative of a Contravariant Vector -- 5.14 Exercises -- 6: Tensor in Relativity -- 6.1 Special Theory of Relativity -- 6.2 Four-Vectors in Relativity -- 6.3 Maxwell's Equations -- 6.4 General Theory of Relativity -- 6.5 Spherically Symmetrical Metric -- 6.6 Planetary Motion -- 6.7 Exercises -- 7: Geodesics and Its Coordinate -- 7.1 Families of Curves -- 7.2 Euler's Form -- 7.3 Geodesics -- 7.4 Geodesic Form of the Line Elements -- 7.5 Geodesic Coordinate -- 7.6 Exercise -- Index -- About the Authors. | |
520 | _ahe primary purpose of this book is the study of the invariance form of equation relative to the totally of the rectangular co-ordinate system in the three-dimensional Euclidean space. | ||
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aTensor algebra. | |
655 | 4 | _aElectronic books. | |
700 | 1 | _aPadaliya, Sanjay Kumar. | |
776 | 0 | 8 |
_iPrint version: _aKoranga, Bipin Singh _tAn Introduction to Tensor Analysis _dMilton : River Publishers,c2020 _z9788770225816 |
797 | 2 | _aProQuest (Firm) | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=6450277 _zClick to View |
999 |
_c23546 _d23546 |