000 | 04999nam a22004813i 4500 | ||
---|---|---|---|
001 | EBC6295216 | ||
003 | MiAaPQ | ||
005 | 20240724114438.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2015 xx o ||||0 eng d | ||
020 |
_a9783319142036 _q(electronic bk.) |
||
020 | _z9783319142029 | ||
035 | _a(MiAaPQ)EBC6295216 | ||
035 | _a(Au-PeEL)EBL6295216 | ||
035 | _a(OCoLC)902624740 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQ342 | |
082 | 0 | _a511.313 | |
100 | 1 | _aTrillas, Enric. | |
245 | 1 | 0 |
_aFuzzy Logic : _bAn Introductory Course for Engineering Students. |
250 | _a1st ed. | ||
264 | 1 |
_aCham : _bSpringer International Publishing AG, _c2015. |
|
264 | 4 | _c©2015. | |
300 | _a1 online resource (211 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aStudies in Fuzziness and Soft Computing Series ; _vv.320 |
|
505 | 0 | _aIntro -- Preface -- Contents -- 1 On the Roots of Fuzzy Sets -- 1.1 A Genesis of Fuzzy Sets -- 1.1.1 L-Degree -- 1.1.2 Fuzzy Sets -- 1.2 Opposite, Negate, and Middle -- 1.2.1 Antonyms -- 1.2.2 Negations -- 1.2.3 Antonyms and Negations -- 1.2.4 Medium Term -- 1.3 AND/OR -- 1.3.1 AND -- 1.3.2 OR -- 1.4 Qualified, Modified, and Constrained Predicates -- 1.4.1 Qualified Predicates -- 1.4.2 Linguistic Modifiers -- 1.4.3 Constrained Predicates -- 1.4.4 Group Meaning -- 1.4.5 Synonims -- 1.5 Linguistic Variables -- 1.5.1 Fuzzy Partition -- 1.6 A Note on Lattices -- 1.6.1 Examples -- 2 Algebras of Fuzzy Sets -- 2.1 Introduction -- 2.1.1 Cartesian Product -- 2.1.2 Extension Principle -- 2.1.3 Preservation of the Classical Case -- 2.1.4 Resolution -- 2.2 The Concept of an `Algebra of Fuzzy Sets' -- 2.2.1 Introduction -- 2.2.2 Algebras of Fuzzy Sets -- 2.2.3 Non-contradiction and Excluded-Middle -- 2.2.4 Decomposable Algebras -- 2.2.5 Standard Algebras of Fuzzy Sets -- 2.2.6 Strong Negations -- 2.2.7 Continuous T-Norms and T-Conorms -- 2.2.8 Laws of Fuzzy Sets -- 2.2.9 Examples -- 2.3 On Aggregating Imprecise Information -- 2.3.1 Aggregation Functions -- 2.3.2 Ordered Weighted Means -- 2.3.3 More on Aggregations -- 2.3.4 Examples -- 3 Reasoning and Fuzzy Logic -- 3.1 What Does It Mean ``Logic''? -- 3.1.1 Logic and Consequence Operators -- 3.1.2 Conjecturing -- 3.2 Reasoning with Conditionals: Representation -- 3.2.1 What is a Conditional? -- 3.2.2 The Case of Boolean Algebras -- 3.2.3 Fuzzy Conditionals -- 3.3 Short Note on Other Modes of Reasoning -- 3.4 Inference with Fuzzy Rules -- 3.4.1 Finite Case -- 3.4.2 Inference with Several Rules -- 3.4.3 Examples -- 3.5 Deffuzification -- 3.6 Rules and Conjectures -- 3.7 Two Final Examples -- 4 Fuzzy Relations -- 4.1 What Is a Fuzzy Relation? -- 4.2 How to Compose Fuzzy Relations?. | |
505 | 8 | _a4.3 Which Relevant Properties Do Have a Fuzzy Binary Relation? -- 4.4 The Concept of T-State -- 4.5 Fuzzy relations and α-cuts -- 5 T-Preorders and T-Indistinguishabilities -- 5.1 Which Is the Aim of This Section? -- 5.2 The Characterization of T-Preorders -- 5.3 The Characterization of T-Indistinguishabilities -- 6 Fuzzy Arithmetic -- 6.1 Introduction -- 6.2 Fuzzy Numbers -- 6.2.1 Operations with Fuzzy Numbers -- 6.2.2 Operations with Triangular Fuzzy Numbers -- 6.2.3 Note -- 6.3 A Note on the Lattice of Fuzzy Numbers -- 6.3.1 Example -- 6.4 A Note on Fuzzy Quantifiers -- 6.4.1 Quantified Fuzzy Statements -- 7 Fuzzy Measures -- 7.1 Introduction -- 7.2 The Concept of a Measure -- 7.3 Types of Measures -- 7.4 λ-Measures -- 7.5 Measures of Possibility and Necessity -- 7.6 Examples -- 7.7 Probability, Possibility and Necessity -- 7.8 Probability of Fuzzy Sets -- 8 An Introduction to Fuzzy Control -- 8.1 Introduction -- 8.1.1 Note -- 8.2 Revising Conditional and Implications in Fuzzy Control -- 8.2.1 Inference from Imprecise Rules -- 8.2.2 Takagi-Sugeno of Order 1 -- 8.3 Control of Nonlinear Systems -- 8.3.1 State-Space Representation -- 8.3.2 Takagi-Sugeno Models for Control of Nonlinear Systems -- 8.3.3 Stability Analysis -- 8.3.4 Parallel Distributed Compensation -- 8.3.5 Piecewise Bilinear Model -- 8.3.6 Vertex Placement Principle -- Bibliography. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aFuzzy logic. | |
655 | 4 | _aElectronic books. | |
700 | 1 | _aEciolaza, Luka. | |
700 | 1 | _aTrillas, Enric. | |
700 | 1 | _aEciolaza, Luka. | |
776 | 0 | 8 |
_iPrint version: _aTrillas, Enric _tFuzzy Logic _dCham : Springer International Publishing AG,c2015 _z9783319142029 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aStudies in Fuzziness and Soft Computing Series | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=6295216 _zClick to View |
999 |
_c20061 _d20061 |