000 04759nam a22004933i 4500
001 EBC6275346
003 MiAaPQ
005 20240724114433.0
006 m o d |
007 cr cnu||||||||
008 240724s2020 xx o ||||0 eng d
020 _a9781000204414
_q(electronic bk.)
020 _z9780367558468
035 _a(MiAaPQ)EBC6275346
035 _a(Au-PeEL)EBL6275346
035 _a(OCoLC)1182879691
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aRA644.C67 .S556 2021
082 0 _a616.24140727
100 1 _aShinde, Gitanjali Rahul.
245 1 0 _aData Analytics for Pandemics :
_bA COVID-19 Case Study.
250 _a1st ed.
264 1 _aMilton :
_bTaylor & Francis Group,
_c2020.
264 4 _c©2021.
300 _a1 online resource (85 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aIntelligent Signal Processing and Data Analysis Series
505 0 _aCover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgment -- Authors -- Chapter 1 COVID-19 Outbreak -- 1.1 Introduction -- 1.2 Epidemic and Pandemic Overview -- 1.2.1 Stages of Disease -- 1.2.2 Pandemic Phases -- 1.2.2.1 Pandemic Risk Factors -- 1.2.2.2 Pandemic Mitigation -- 1.2.2.3 Situational Awareness -- 1.2.2.4 History of Pandemics -- 1.3 Novel Coronavirus -- 1.4 Medical Overview - Nature and Spread -- 1.5 Vulnerability Index -- References -- Chapter 2 Data Processing and Knowledge Extraction -- 2.1 Data Sources and Related Challenges -- 2.2 Data Storage: Platform -- 2.2.1 Storage Services -- 2.2.2 Big Data Analytics Services -- 2.2.3 Data Warehousing Services -- 2.3 Data Processing -- 2.3.1 Missing Values Imputation -- 2.3.2 Noise Treatment -- 2.4 Knowledge Extraction -- 2.4.1 Knowledge Extraction Based on Data Types -- 2.4.1.1 Knowledge Extraction from Text Data -- 2.4.1.2 Knowledge Extraction from Image Data -- 2.4.1.3 Knowledge Extraction from Audio Data -- 2.4.1.4 Knowledge Extraction from Video Data -- 2.4.2 Knowledge Extraction Techniques -- References -- Chapter 3 Big Data Analytics for COVID-19 -- 3.1 All You Need to Know -- 3.1.1 WEB 2.0 -- 3.1.2 Critical Thinking -- 3.1.3 Statistical Programming (R/Python) -- 3.1.4 R Programming Language -- 3.1.5 Python Programming Language -- 3.2 Data Visualization -- 3.2.1 Big Data Analytics and COVID-19 -- 3.2.1.1 Statistical Parameters -- 3.2.1.2 Predictive Analytics -- 3.3 Data Models and Performance -- 3.3.1 Data Modeling Phases -- 3.3.2 Ensemble Data Model -- 3.3.3 Model Performance -- 3.4 Big Data Techniques -- 3.4.1 Association Rule Learning -- 3.4.2 Classification Tree Analysis -- 3.4.3 Genetic Algorithm -- 3.4.4 Machine Learning -- 3.4.5 Regression Analysis -- 3.4.6 Social Network Analysis -- 3.5 Big Data Tools and Technology.
505 8 _aReferences -- Chapter 4 Mitigation Strategies and Recommendations -- 4.1 Case Studies of COVID-19 Outbreak: Global Scenario -- 4.1.1 COVID-19 Spread in China -- 4.1.2 COVID-19 Spread in Italy -- 4.1.3 COVID-19 Spread in the United States -- 4.2 Mitigation Strategies and Discussion -- 4.3 Issues and Challenges -- 4.4 Recommendations -- 4.4.1 Recommendations for Citizens -- 4.4.2 Recommendations for COVID-19 Suspected and Infected Patients -- 4.4.3 Recommendations for Hospital Management: Adults -- 4.4.3.1 IPC Measures -- 4.4.4 Recommendations and Caring for Pregnant Ladies -- 4.4.5 Recommendations for Quarantine -- 4.5 Conclusions -- 4.6 Future Outlook -- References -- Index.
520 _aThe focus of this book is data analytics for COVID-19 which includes an overview of COVID-19 in terms of epidemic/pandemic, data processing and knowledge extraction. Data sources, storage and platforms are discussed along with discussion on data models, their performance, different Big data techniques, tools and technologies.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aCOVID-19 (Disease)-Statistical methods.
655 4 _aElectronic books.
700 1 _aKalamkar, Asmita Balasaheb.
700 1 _aMahalle, Parikshit N.
700 1 _aDey, Nilanjan.
776 0 8 _iPrint version:
_aShinde, Gitanjali Rahul
_tData Analytics for Pandemics
_dMilton : Taylor & Francis Group,c2020
_z9780367558468
797 2 _aProQuest (Firm)
830 0 _aIntelligent Signal Processing and Data Analysis Series
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=6275346
_zClick to View
999 _c19886
_d19886