000 08140nam a22004933i 4500
001 EBC6126527
003 MiAaPQ
005 20240724114134.0
006 m o d |
007 cr cnu||||||||
008 240724s2020 xx o ||||0 eng d
020 _a9781800208322
_q(electronic bk.)
020 _z9781800209046
035 _a(MiAaPQ)EBC6126527
035 _a(Au-PeEL)EBL6126527
035 _a(OCoLC)1143634009
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQ325.5 .B384 2020
082 0 _a006.31
100 1 _aBateman, Blaine.
245 1 4 _aThe the Supervised Learning Workshop :
_bA New, Interactive Approach to Understanding Supervised Learning Algorithms, 2nd Edition.
250 _a2nd ed.
264 1 _aBirmingham :
_bPackt Publishing, Limited,
_c2020.
264 4 _c©2020.
300 _a1 online resource (531 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
505 0 _aCover -- FM -- Copyright -- Table of Contents -- Preface -- Chapter 1: Fundamentals -- Introduction -- When to Use Supervised Learning -- Python Packages and Modules -- Loading Data in Pandas -- Exercise 1.01: Loading and Summarizing the Titanic Dataset -- Exercise 1.02: Indexing and Selecting Data -- Exercise 1.03: Advanced Indexing and Selection -- Pandas Methods -- Exercise 1.04: Using the Aggregate Method -- Quantiles -- Lambda Functions -- Exercise 1.05: Creating Lambda Functions -- Data Quality Considerations -- Managing Missing Data -- Class Imbalance -- Low Sample Size -- Activity 1.01: Implementing Pandas Functions -- Summary -- Chapter 2: Exploratory Data Analysis and Visualization -- Introduction -- Exploratory Data Analysis (EDA) -- Summary Statistics and Central Values -- Exercise 2.01: Summarizing the Statistics of Our Dataset -- Missing Values -- Finding Missing Values -- Exercise 2.02: Visualizing Missing Values -- Imputation Strategies for Missing Values -- Exercise 2.03: Performing Imputation Using Pandas -- Exercise 2.04: Performing Imputation Using Scikit-Learn -- Exercise 2.05: Performing Imputation Using Inferred Values -- Activity 2.01: Summary Statistics and Missing Values -- Distribution of Values -- Target Variable -- Exercise 2.06: Plotting a Bar Chart -- Categorical Data -- Exercise 2.07: Identifying Data Types for Categorical Variables -- Exercise 2.08: Calculating Category Value Counts -- Exercise 2.09: Plotting a Pie Chart -- Continuous Data -- Skewness -- Kurtosis -- Exercise 2.10: Plotting a Histogram -- Exercise 2.11: Computing Skew and Kurtosis -- Activity 2.02: Representing the Distribution of Values Visually -- Relationships within the Data -- Relationship between Two Continuous Variables -- Pearson's Coefficient of Correlation -- Exercise 2.12: Plotting a Scatter Plot.
505 8 _aExercise 2.13: Plotting a Correlation Heatmap -- Using Pairplots -- Exercise 2.14: Implementing a Pairplot -- Relationship between a Continuous and a Categorical Variable -- Exercise 2.15: Plotting a Bar Chart -- Exercise 2.16: Visualizing a Box Plot -- Relationship Between Two Categorical Variables -- Exercise 2.17: Plotting a Stacked Bar Chart -- Activity 2.03: Relationships within the Data -- Summary -- Chapter 3: Linear Regression -- Introduction -- Regression and Classification Problems -- The Machine Learning Workflow -- Business Understanding -- Data Understanding -- Data Preparation -- Modeling -- Evaluation -- Deployment -- Exercise 3.01: Plotting Data with a Moving Average -- Activity 3.01: Plotting Data with a Moving Average -- Linear Regression -- Least Squares Method -- The Scikit-Learn Model API -- Exercise 3.02: Fitting a Linear Model Using the Least Squares Method -- Activity 3.02: Linear Regression Using the Least Squares Method -- Linear Regression with Categorical Variables -- Exercise 3.03: Introducing Dummy Variables -- Activity 3.03: Dummy Variables -- Polynomial Models with Linear Regression -- Exercise 3.04: Polynomial Models with Linear Regression -- Activity 3.04: Feature Engineering with Linear Regression -- Generic Model Training -- Gradient Descent -- Exercise 3.05: Linear Regression with Gradient Descent -- Exercise 3.06: Optimizing Gradient Descent -- Activity 3.05: Gradient Descent -- Multiple Linear Regression -- Exercise 3.07: Multiple Linear Regression -- Summary -- Chapter 4: Autoregression -- Introduction -- Autoregression Models -- Exercise 4.01: Creating an Autoregression Model -- Activity 4.01: Autoregression Model Based on Periodic Data -- Summary -- Chapter 5: Classification Techniques -- Introduction -- Ordinary Least Squares as a Classifier -- Exercise 5.01: Ordinary Least Squares as a Classifier.
505 8 _aLogistic Regression -- Exercise 5.02: Logistic Regression as a Classifier - Binary Classifier -- Exercise 5.03: Logistic Regression - Multiclass Classifier -- Activity 5.01: Ordinary Least Squares Classifier - Binary Classifier -- Select K Best Feature Selection -- Exercise 5.04: Breast Cancer Diagnosis Classification Using Logistic Regression -- Classification Using K-Nearest Neighbors -- Exercise 5.05: KNN Classification -- Exercise 5.06: Visualizing KNN Boundaries -- Activity 5.02: KNN Multiclass Classifier -- Classification Using Decision Trees -- Exercise 5.07: ID3 Classification -- Classification and Regression Tree -- Exercise 5.08: Breast Cancer Diagnosis Classification Using a CART Decision Tree -- Activity 5.03: Binary Classification Using a CART Decision Tree -- Artificial Neural Networks -- Exercise 5.09: Neural Networks - Multiclass Classifier -- Activity 5.04: Breast Cancer Diagnosis Classification Using Artificial Neural Networks -- Summary -- Chapter 6: Ensemble Modeling -- Introduction -- One-Hot Encoding -- Exercise 6.01: Importing Modules and Preparing the Dataset -- Overfitting and Underfitting -- Underfitting -- Overfitting -- Overcoming the Problem of Underfitting and Overfitting -- Bagging -- Bootstrapping -- Exercise 6.02: Using the Bagging Classifier -- Random Forest -- Exercise 6.03: Building the Ensemble Model Using Random Forest -- Boosting -- Adaptive Boosting -- Exercise 6.04: Implementing Adaptive Boosting -- Gradient Boosting -- Exercise 6.05: Implementing GradientBoostingClassifier to Build an Ensemble Model -- Stacking -- Exercise 6.06: Building a Stacked Model -- Activity 6.01: Stacking with Standalone and Ensemble Algorithms -- Summary -- Chapter 7: Model Evaluation -- Introduction -- Importing the Modules and Preparing Our Dataset -- Evaluation Metrics -- Regression Metrics.
505 8 _aExercise 7.01: Calculating Regression Metrics -- Classification Metrics -- Numerical Metrics -- Curve Plots -- Exercise 7.02: Calculating Classification Metrics -- Splitting a Dataset -- Hold-Out Data -- K-Fold Cross-Validation -- Sampling -- Exercise 7.03: Performing K-Fold Cross-Validation with Stratified Sampling -- Performance Improvement Tactics -- Variation in Train and Test Errors -- Learning Curve -- Validation Curve -- Hyperparameter Tuning -- Exercise 7.04: Hyperparameter Tuning with Random Search -- Feature Importance -- Exercise 7.05: Feature Importance Using Random Forest -- Activity 7.01: Final Test Project -- Summary -- Appendix -- Index.
520 _aCut through the noise and get real results with a step-by-step approach to understanding supervised learning algorithms.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aMachine learning.
655 4 _aElectronic books.
700 1 _aJha, Ashish Ranjan.
700 1 _aJohnston, Benjamin.
700 1 _aMathur, Ishita.
776 0 8 _iPrint version:
_aBateman, Blaine
_tThe the Supervised Learning Workshop
_dBirmingham : Packt Publishing, Limited,c2020
_z9781800209046
797 2 _aProQuest (Firm)
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=6126527
_zClick to View
999 _c16460
_d16460