000 04275nam a22004693i 4500
001 EBC5990837
003 MiAaPQ
005 20240724114049.0
006 m o d |
007 cr cnu||||||||
008 240724s2019 xx o ||||0 eng d
020 _a9781470453992
_q(electronic bk.)
020 _z9781470436476
035 _a(MiAaPQ)EBC5990837
035 _a(Au-PeEL)EBL5990837
035 _a(OCoLC)1130902668
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA613.6
_b.L67 2019
100 1 _aLorscheid, Oliver.
245 1 0 _aQuiver Grassmannians of Extended Dynkin Type
_d
_ Part I :
_bSchubert Systems and Decompositions into Affine Spaces.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2019.
264 4 _c©2019.
300 _a1 online resource (90 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society Series ;
_vv.261
505 0 _aCover -- Title page -- Introduction -- Chapter 1. Background -- 1.1. Coefficient quiver -- 1.2. Schubert decompositions -- 1.3. Representations of Schubert cells -- Chapter 2. Schubert systems -- 2.1. The complete Schubert system -- 2.2. Partial Evaluations -- 2.3. Contradictory -states -- 2.4. Definition of -states -- 2.5. The reduced Schubert system -- 2.6. Computing -states -- 2.7. Solvable -states -- 2.8. Extremal edges -- 2.9. Patchwork solutions -- 2.10. Extremal paths -- Chapter 3. First applications -- 3.1. The Kronecker quiver -- 3.2. Dynkin quivers -- Chapter 4. Schubert decompositions for type ̃ _{ } -- 4.1. Contradictory of the first and of the second kind -- 4.2. Automorphisms of the Dynkin diagram -- 4.3. Bases for some indecomposable representations -- 4.4. The main theorem -- Chapter 5. Proof of Theorem 4.1 -- 5.1. Defect -1 -- Appendix A. Representations for quivers of type ̃ _{ } -- A.1. Reflections and Auslander-Reiten translates -- A.2. Indecomposable and exceptional representations -- A.3. The Auslander-Reiten quiver -- A.4. The tubes -- A.5. Roots -- A.6. The defect -- Appendix B. Bases for representations of type ̃ _{ } -- B.1. Defect -1 -- B.2. Defect -2 -- B.3. Positive defect -- B.4. Exceptional tubes of rank 2 -- B.5. Exceptional tubes of rank -2 -- B.6. Homogeneous tubes -- Bibliography -- Back Cover.
520 _aLet Q be a quiver of extended Dynkin type \widetilde{D}_n. In this first of two papers, the authors show that the quiver Grassmannian \mathrm{Gr}_{underline{e}}(M) has a decomposition into affine spaces for every dimension vector underline{e} and every indecomposable representation M of defect -1 and defect 0, with the exception of the non-Schurian representations in homogeneous tubes. The authors characterize the affine spaces in terms of the combinatorics of a fixed coefficient quiver for M. The method of proof is to exhibit explicit equations for the Schubert cells of \mathrm{Gr}_{underline{e}}(M) and to solve this system of equations successively in linear terms. This leads to an intricate combinatorial problem, for whose solution the authors develop the theory of Schubert systems. In Part 2 of this pair of papers, they extend the result of this paper to all indecomposable representations M of Q and determine explicit formulae for the F-polynomial of M.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aDynkin diagrams.
650 0 _aGrassmann manifolds.
650 0 _aMathematics.
655 4 _aElectronic books.
700 1 _aWeist, Thorsten.
776 0 8 _iPrint version:
_aLorscheid, Oliver
_tQuiver Grassmannians of Extended Dynkin Type
_d
_ Part I: Schubert Systems and Decompositions into Affine Spaces
_dProvidence : American Mathematical Society,c2019
_z9781470436476
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society Series
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5990837
_zClick to View
999 _c15197
_d15197