000 | 08280nam a22004813i 4500 | ||
---|---|---|---|
001 | EBC5988153 | ||
003 | MiAaPQ | ||
005 | 20240724114039.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2019 xx o ||||0 eng d | ||
020 |
_a9781630816667 _q(electronic bk.) |
||
020 | _z9781630816650 | ||
035 | _a(MiAaPQ)EBC5988153 | ||
035 | _a(Au-PeEL)EBL5988153 | ||
035 | _a(OCoLC)1144896169 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aTK5103.59 .C38 2019 | |
082 | 0 | _a621.3827 | |
100 | 1 | _aCavaliere, Fabio. | |
245 | 1 | 0 | _aPhotonic Applications for Radio Systems Networks. |
250 | _a1st ed. | ||
264 | 1 |
_aNorwood : _bArtech House, _c2019. |
|
264 | 4 | _c©2019. | |
300 | _a1 online resource (239 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
505 | 0 | _aIntro -- Photonic Applications forRadio Systems and Networks -- Contents -- Chapter 1 Introduction -- Chapter 2 Radio Systems Physical Layer -- 2.1 Introduction -- 2.2 Physical Layer of 4G Radio Systems -- 2.2.1 Orthogonal Frequency Division Multiplexing -- 2.2.2 Orthogonal Frequency Division Multiplexing Access -- 2.2.3 LTE Frame Structure -- 2.2.4 LTE Systems Bandwidth -- 2.2.5 TDD Frame Structure -- 2.2.6 LTE Physical Layer Parameters -- 2.3 Physical Layer of 5G Radio Systems -- 2.3.1 Modulation Schemes -- 2.3.2 5G Numerology and Frame Structure -- 2.3.3 5G Resource Grid and Bandwidth -- 2.3.4 Time Division Duplex 5G Systems -- 2.3.5 5G Physical Layer Parameters -- 2.4 Multiple Antenna Systems and Beamforming -- 2.5 Signal Processing Chain in 5G -- 2.6 Conclusions -- References -- Chapter 3 Radio Access Network Architecture -- 3.1 Introduction -- 3.2 5G Use Cases and Requirements -- 3.3 The Radio Protocol Stack -- 3.4 The HARQ Protocol -- 3.5 Latency Budget in Mobile Communication Systems -- 3.6 RAN Functional Split -- 3.6.1 Radio Split Architecture -- 3.6.2 Functional Split Options -- 3.7 The 5G Transport Network Architecture -- 3.7.1 RAN Logical Interfaces -- 3.7.2 Definition of Fronthaul, Midhaul, and Backhaul -- 3.7.3 Mapping of Functional Split Options onto the Transport Network -- 3.8 RAN Deployment Scenarios -- 3.9 Network Slicing -- 3.10 Bit Rate and Latency with Different Functional Split Options -- 3.10.1 Bit Rate Dependency on the Split Option -- 3.10.2 Bit Rate Calculation -- 3.10.3 Latency Calculation -- 3.11 Summary -- References -- Chapter 4 Optical Transmission Modeling in Digital RANs -- 4.1 Introduction -- 4.2 Fiber Attenuation -- 4.3 Performance Metrics in Optical Communication Systems -- 4.3.1 Bit Error Rate -- 4.3.2 Q Factor -- 4.3.3 Optical Modulation Amplitude -- 4.3.4 Error Vector Magnitude. | |
505 | 8 | _a4.3.5 Optical Signal-to-Noise Ratio -- 4.3.6 Using Different Penalty Definitions -- 4.4 Optical Receiver Model -- 4.5 Fiber Propagation Penalties -- 4.5.1 Chromatic Dispersion -- 4.5.2 Polarization Mode Dispersion -- 4.5.3 Chromatic and Polarization Mode Dispersion Tolerance of Direct Detection Modulation Formats -- 4.5.4 Self-Phase Modulation -- 4.5.5 Cross-Phase Modulation -- 4.5.6 Four-Wave Mixing -- 4.6 Stimulated Raman Scattering -- 4.6.1 Stimulated Brillouin Scattering -- 4.7 Rayleigh Backscattering -- 4.8 Summary -- References -- Chapter 5 Optical Systems and Technologies for Digital Radio Access Networks -- 5.1 Introduction -- 5.2 Point-to-Point Fiber Systems -- 5.2.1 Optical Modules for Point-to-Point Links -- 5.2.2 Modulation Formats in Point-to-Point Links -- 5.3 Dense WDM Systems -- 5.3.1 Optical Amplifiers -- 5.3.2 Statistical Design of DWDM Links -- 5.3.3 Wavelength Dependent Losses and Gains -- 5.3.4 Modulation Formats in a DWDM RAN -- 5.3.5 Further Considerations on DWDM RANs -- 5.4 Mobile Transport over Fixed-Access Networks -- 5.4.1 Passive Optical Networks -- 5.4.2 Mobile Transport over PON -- 5.4.3 Dimensioning of a Backhaul Network -- 5.5 Summary -- References -- Chapter 6 Optical Switching for Radio Access and Aggregation Networks -- 6.1 Introduction -- 6.2 Network Application of Optical Switches -- 6.2.1 Network Reconfigurability -- 6.2.2 Optical Nodes -- 6.2.3 OEO ROADM Node -- 6.2.4 OOO ROADM Node -- 6.2.5 OOO SDM ROADM Node -- 6.3 Optical Switching Technologies -- 6.3.1 Wavelength Selective Switch -- 6.3.2 NxM Switching Matrix Based on Silicon Photonics -- 6.3.3 CMOS Photonics for the ROADM Node -- 6.3.4 Switching Element Design -- 6.4 Application Examples of the Silicon Photonics Integrated ROADM Node -- 6.4.1 Simplified Silicon Photonic ROADM -- 6.4.2 Simplified Silicon Photonic ROADM Node in Optical Ring Topology Networks. | |
505 | 8 | _a6.4.3 Simplified Silicon Photonic ROADM Node for the Edge Node Interconnection -- 6.4.4 Simplified Silicon Photonic ROADM Node for Fronthaul Networks -- 6.5 Conclusions -- Appendix 6A: Silicon Comparison with III-V and Bidimensional Material in Photonics -- Appendix 6B: Practical Aspects of Photonic Switch Implementation with Microring Resonators -- 6B.1 Suitable Microring Configurations -- Chapter 7 Analog Optical Fronthaul Techniques -- 7.1 Introduction -- 7.2 Intensity Modulation of Analog Optical Signals -- 7.3 Peak to Average Power Ratio of Multicarrier Signals -- 7.4 Optical Modulation in Radio over Fiber Systems -- 7.4.1 Directly Modulated Lasers -- 7.4.2 Mach-Zehnder Modulator -- 7.4.3 Electroabsorption Modulator -- 7.5 Design of a Radio over Fiber Link -- 7.6 Performance Analysis of a Subcarrier Multiplexing System -- 7.7 Summary -- References -- Chapter 8 Photonics for Radio Systems and Networks: Optical Beamforming -- 8.1 Introduction -- 8.2 Aspects of the Next Generation ICT that Make Beamforming a Key Block of Such Systems -- 8.3 Impacts of Beamforming Antennas in New Generation Wireless Networks and Future Scenarios -- 8.3.1 The Innovation Impact on System Complexity and Footprint -- 8.4 How to Operate with Beamforming Antennas -- 8.5 What a Beamforming Antenna Looks Like -- 8.6 How to Drive Beamforming Antennas -- 8.6.1 Phase Precision -- 8.6.2 Time and Frequency Precision -- 8.6.3 Hybrid Realization -- 8.7 The Phase Shifter, the Squint Phenomenon, and the True-Time-Delay Technique -- 8.8 How Optics Can Be Beneficial to Perform Phase Shift Control -- 8.8.1 Optical Phase Shift Realization -- 8.9 A Viable Optical Beamforming Implementation with True-Time Delay -- 8.10 The Need for Optical Phase Shift Control -- 8.11 How Optics Can Be Beneficial in Performing a Stable Clock and Frequency Reference -- 8.12 Conclusions -- References. | |
505 | 8 | _aChapter 9 Photonic Applications for Radio Systems and Networks -- 9.1 Introduction -- 9.2 The IP Core Network Evolution -- 9.2.1 High-Speed Line Interface for IP Core Router Line Cards -- 9.3 The Use of Optical Modules in Router Cards -- 9.3.1 Expected Evolution in IP Core Network with Integrated Onboard Modules -- 9.3.2 High-Speed IC Interconnection -- 9.4 Integrated Photonics Technology for Multiwavelength Line Cards -- 9.4.1 Photonic Integrated Transceiver -- 9.4.2 Multicarrier Light Source -- 9.5 Optical Interconnection with Pluggable Modules -- 9.5.1 Pluggable Module Form Factor -- 9.6 Conclusions -- References -- Chapter 10 Conclusions -- About the Authors -- Index. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aOptical communications--Technological innovations. | |
650 | 0 | _aPhotonics. | |
650 | 0 | _aMobile communication systems. | |
655 | 4 | _aElectronic books. | |
700 | 1 | _aD'Errico, Antonio. | |
776 | 0 | 8 |
_iPrint version: _aCavaliere, Fabio _tPhotonic Applications for Radio Systems Networks _dNorwood : Artech House,c2019 _z9781630816650 |
797 | 2 | _aProQuest (Firm) | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5988153 _zClick to View |
999 |
_c15112 _d15112 |