000 | 03530nam a22004693i 4500 | ||
---|---|---|---|
001 | EBC5295324 | ||
003 | MiAaPQ | ||
005 | 20240729131757.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2014 xx o ||||0 eng d | ||
020 |
_a9781470418946 _q(electronic bk.) |
||
020 | _z9781470416669 | ||
035 | _a(MiAaPQ)EBC5295324 | ||
035 | _a(Au-PeEL)EBL5295324 | ||
035 | _a(OCoLC)890464618 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA691 .T68 2014 | |
082 | 0 | _a516/.158 | |
100 | 1 | _aTotik, Vilmos. | |
245 | 1 | 0 | _aPolynomial Approximation on Polytopes. |
250 | _a1st ed. | ||
264 | 1 |
_aProvidence : _bAmerican Mathematical Society, _c2014. |
|
264 | 4 | _c©2014. | |
300 | _a1 online resource (124 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aMemoirs of the American Mathematical Society Series ; _vv.232 |
|
505 | 0 | _aCover -- Title page -- Part \ 1 . The continuous case -- Chapter 1. The result -- Chapter 2. Outline of the proof -- Chapter 3. Fast decreasing polynomials -- Chapter 4. Approximation on simple polytopes -- Chapter 5. Polynomial approximants on rhombi -- Chapter 6. Pyramids and local moduli on them -- Chapter 7. Local approximation on the sets ₐ -- Chapter 8. Global approximation of = _{ } on _{1/32} excluding a neighborhood of the apex -- Chapter 9. Global approximation of on _{1/64} -- Chapter 10. Completion of the proof of Theorem 1.1 -- Chapter 11. Approximation in \R^{ } -- Chapter 12. A -functional and the equivalence theorem -- Part \ 2 . The ^{ }-case -- Chapter 13. The ^{ } result -- Chapter 14. Proof of the ^{ } result -- Chapter 15. The dyadic decomposition -- Chapter 16. Some properties of ^{ } moduli of smoothness -- Chapter 17. Local ^{ } moduli of smoothness -- Chapter 18. Local approximation -- Chapter 19. Global ^{ } approximation excluding a neighborhood of the apex -- Chapter 20. Strong direct and converse inequalities -- Chapter 21. The -functional in ^{ } and the equivalence theorem -- Acknowledgement -- Bibliography -- Back Cover. | |
520 | _aPolynomial approximation on convex polytopes in \mathbf{R}^d is considered in uniform and L^p-norms. For an appropriate modulus of smoothness matching direct and converse estimates are proven. In the L^p-case so called strong direct and converse results are also verified. The equivalence of the moduli of smoothness with an appropriate K-functional follows as a consequence. The results solve a problem that was left open since the mid 1980s when some of the present findings were established for special, so-called simple polytopes. | ||
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aGeometry, Riemannian. | |
650 | 0 | _aOrthogonal polynomials. | |
650 | 0 | _aPolytopes. | |
655 | 4 | _aElectronic books. | |
776 | 0 | 8 |
_iPrint version: _aTotik, Vilmos _tPolynomial Approximation on Polytopes _dProvidence : American Mathematical Society,c2014 _z9781470416669 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aMemoirs of the American Mathematical Society Series | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5295324 _zClick to View |
999 |
_c136280 _d136280 |