000 03530nam a22004693i 4500
001 EBC5295324
003 MiAaPQ
005 20240729131757.0
006 m o d |
007 cr cnu||||||||
008 240724s2014 xx o ||||0 eng d
020 _a9781470418946
_q(electronic bk.)
020 _z9781470416669
035 _a(MiAaPQ)EBC5295324
035 _a(Au-PeEL)EBL5295324
035 _a(OCoLC)890464618
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA691 .T68 2014
082 0 _a516/.158
100 1 _aTotik, Vilmos.
245 1 0 _aPolynomial Approximation on Polytopes.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2014.
264 4 _c©2014.
300 _a1 online resource (124 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society Series ;
_vv.232
505 0 _aCover -- Title page -- Part \ 1 . The continuous case -- Chapter 1. The result -- Chapter 2. Outline of the proof -- Chapter 3. Fast decreasing polynomials -- Chapter 4. Approximation on simple polytopes -- Chapter 5. Polynomial approximants on rhombi -- Chapter 6. Pyramids and local moduli on them -- Chapter 7. Local approximation on the sets ₐ -- Chapter 8. Global approximation of = _{ } on _{1/32} excluding a neighborhood of the apex -- Chapter 9. Global approximation of on _{1/64} -- Chapter 10. Completion of the proof of Theorem 1.1 -- Chapter 11. Approximation in \R^{ } -- Chapter 12. A -functional and the equivalence theorem -- Part \ 2 . The ^{ }-case -- Chapter 13. The ^{ } result -- Chapter 14. Proof of the ^{ } result -- Chapter 15. The dyadic decomposition -- Chapter 16. Some properties of ^{ } moduli of smoothness -- Chapter 17. Local ^{ } moduli of smoothness -- Chapter 18. Local approximation -- Chapter 19. Global ^{ } approximation excluding a neighborhood of the apex -- Chapter 20. Strong direct and converse inequalities -- Chapter 21. The -functional in ^{ } and the equivalence theorem -- Acknowledgement -- Bibliography -- Back Cover.
520 _aPolynomial approximation on convex polytopes in \mathbf{R}^d is considered in uniform and L^p-norms. For an appropriate modulus of smoothness matching direct and converse estimates are proven. In the L^p-case so called strong direct and converse results are also verified. The equivalence of the moduli of smoothness with an appropriate K-functional follows as a consequence. The results solve a problem that was left open since the mid 1980s when some of the present findings were established for special, so-called simple polytopes.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aGeometry, Riemannian.
650 0 _aOrthogonal polynomials.
650 0 _aPolytopes.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aTotik, Vilmos
_tPolynomial Approximation on Polytopes
_dProvidence : American Mathematical Society,c2014
_z9781470416669
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society Series
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5295324
_zClick to View
999 _c136280
_d136280