000 04139nam a22004933i 4500
001 EBC5295323
003 MiAaPQ
005 20240729131757.0
006 m o d |
007 cr cnu||||||||
008 240724s2014 xx o ||||0 eng d
020 _a9781470418939
_q(electronic bk.)
020 _z9780821898567
035 _a(MiAaPQ)EBC5295323
035 _a(Au-PeEL)EBL5295323
035 _a(OCoLC)890463876
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA243 .P58 2014
082 0 _a512.7
100 1 _aPitale, Ameya.
245 1 0 _aTransfer of Siegel Cusp Forms of Degree 2.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2014.
264 4 _c©2014.
300 _a1 online resource (120 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society Series ;
_vv.232
505 0 _aCover -- Title page -- Introduction -- Notation -- Chapter 1. Distinguished vectors in local representations -- 1.1. Parabolic induction to (2,2) -- 1.2. Distinguished vectors: non-archimedean case -- 1.3. Distinguished vectors: archimedean case -- 1.4. Intertwining operator: non-archimedean case -- 1.5. Intertwining operator: archimedean case -- Chapter 2. Global -functions for ₄× ₂ -- 2.1. Bessel models for ₄ -- 2.2. Local zeta integrals -- 2.3. The global integral representation -- 2.4. The functional equation -- Chapter 3. The pullback formula -- 3.1. Local sections: non-archimedean case -- 3.2. The local pullback formula: non-archimedean case -- 3.3. Local sections: archimedean case -- 3.4. The local pullback formula: archimedean case -- 3.5. The global pullback formula -- 3.6. The second global integral representation -- Chapter 4. Holomorphy of global -functions for ₄× ₂ -- 4.1. Preliminary considerations -- 4.2. Eisenstein series and Weil representations -- 4.3. The Siegel-Weil formula and the proof of entireness -- Chapter 5. Applications -- 5.1. The transfer theorems -- 5.2. Analytic properties of -functions -- 5.3. Critical values of -functions -- Bibliography -- Back Cover.
520 _aLet \pi be the automorphic representation of \textrm{GSp}_4(\mathbb{A}) generated by a full level cuspidal Siegel eigenform that is not a Saito-Kurokawa lift, and \tau be an arbitrary cuspidal, automorphic representation of \textrm{GL}_2(\mathbb{A}). Using Furusawa's integral representation for \textrm{GSp}_4\times\textrm{GL}_2 combined with a pullback formula involving the unitary group \textrm{GU}(3,3), the authors prove that the L-functions L(s,\pi\times\tau) are "nice". The converse theorem of Cogdell and Piatetski-Shapiro then implies that such representations \pi have a functorial lifting to a cuspidal representation of \textrm{GL}_4(\mathbb{A}). Combined with the exterior-square lifting of Kim, this also leads to a functorial lifting of \pi to a cuspidal representation of \textrm{GL}_5(\mathbb{A}). As an application, the authors obtain analytic properties of various L-functions related to full level Siegel cusp forms. They also obtain special value results for \textrm{GSp}_4\times\textrm{GL}_1 and \textrm{GSp}_4\times\textrm{GL}_2.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aCusp forms (Mathematics).
650 0 _aSiegel domains.
650 0 _aModular groups.
655 4 _aElectronic books.
700 1 _aSaha, Abhishek.
700 1 _aSchmidt, Ralf.
776 0 8 _iPrint version:
_aPitale, Ameya
_tTransfer of Siegel Cusp Forms of Degree 2
_dProvidence : American Mathematical Society,c2014
_z9780821898567
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society Series
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5295323
_zClick to View
999 _c136279
_d136279