000 | 04139nam a22004933i 4500 | ||
---|---|---|---|
001 | EBC5295323 | ||
003 | MiAaPQ | ||
005 | 20240729131757.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2014 xx o ||||0 eng d | ||
020 |
_a9781470418939 _q(electronic bk.) |
||
020 | _z9780821898567 | ||
035 | _a(MiAaPQ)EBC5295323 | ||
035 | _a(Au-PeEL)EBL5295323 | ||
035 | _a(OCoLC)890463876 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA243 .P58 2014 | |
082 | 0 | _a512.7 | |
100 | 1 | _aPitale, Ameya. | |
245 | 1 | 0 | _aTransfer of Siegel Cusp Forms of Degree 2. |
250 | _a1st ed. | ||
264 | 1 |
_aProvidence : _bAmerican Mathematical Society, _c2014. |
|
264 | 4 | _c©2014. | |
300 | _a1 online resource (120 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aMemoirs of the American Mathematical Society Series ; _vv.232 |
|
505 | 0 | _aCover -- Title page -- Introduction -- Notation -- Chapter 1. Distinguished vectors in local representations -- 1.1. Parabolic induction to (2,2) -- 1.2. Distinguished vectors: non-archimedean case -- 1.3. Distinguished vectors: archimedean case -- 1.4. Intertwining operator: non-archimedean case -- 1.5. Intertwining operator: archimedean case -- Chapter 2. Global -functions for ₄× ₂ -- 2.1. Bessel models for ₄ -- 2.2. Local zeta integrals -- 2.3. The global integral representation -- 2.4. The functional equation -- Chapter 3. The pullback formula -- 3.1. Local sections: non-archimedean case -- 3.2. The local pullback formula: non-archimedean case -- 3.3. Local sections: archimedean case -- 3.4. The local pullback formula: archimedean case -- 3.5. The global pullback formula -- 3.6. The second global integral representation -- Chapter 4. Holomorphy of global -functions for ₄× ₂ -- 4.1. Preliminary considerations -- 4.2. Eisenstein series and Weil representations -- 4.3. The Siegel-Weil formula and the proof of entireness -- Chapter 5. Applications -- 5.1. The transfer theorems -- 5.2. Analytic properties of -functions -- 5.3. Critical values of -functions -- Bibliography -- Back Cover. | |
520 | _aLet \pi be the automorphic representation of \textrm{GSp}_4(\mathbb{A}) generated by a full level cuspidal Siegel eigenform that is not a Saito-Kurokawa lift, and \tau be an arbitrary cuspidal, automorphic representation of \textrm{GL}_2(\mathbb{A}). Using Furusawa's integral representation for \textrm{GSp}_4\times\textrm{GL}_2 combined with a pullback formula involving the unitary group \textrm{GU}(3,3), the authors prove that the L-functions L(s,\pi\times\tau) are "nice". The converse theorem of Cogdell and Piatetski-Shapiro then implies that such representations \pi have a functorial lifting to a cuspidal representation of \textrm{GL}_4(\mathbb{A}). Combined with the exterior-square lifting of Kim, this also leads to a functorial lifting of \pi to a cuspidal representation of \textrm{GL}_5(\mathbb{A}). As an application, the authors obtain analytic properties of various L-functions related to full level Siegel cusp forms. They also obtain special value results for \textrm{GSp}_4\times\textrm{GL}_1 and \textrm{GSp}_4\times\textrm{GL}_2. | ||
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aCusp forms (Mathematics). | |
650 | 0 | _aSiegel domains. | |
650 | 0 | _aModular groups. | |
655 | 4 | _aElectronic books. | |
700 | 1 | _aSaha, Abhishek. | |
700 | 1 | _aSchmidt, Ralf. | |
776 | 0 | 8 |
_iPrint version: _aPitale, Ameya _tTransfer of Siegel Cusp Forms of Degree 2 _dProvidence : American Mathematical Society,c2014 _z9780821898567 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aMemoirs of the American Mathematical Society Series | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5295323 _zClick to View |
999 |
_c136279 _d136279 |