000 | 03292nam a22004933i 4500 | ||
---|---|---|---|
001 | EBC5295301 | ||
003 | MiAaPQ | ||
005 | 20240729131757.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2014 xx o ||||0 eng d | ||
020 |
_a9781470417208 _q(electronic bk.) |
||
020 | _z9781470409814 | ||
035 | _a(MiAaPQ)EBC5295301 | ||
035 | _a(Au-PeEL)EBL5295301 | ||
035 | _a(OCoLC)887172396 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA612.7 .W38 2014 | |
082 | 0 | _a514/.34 | |
100 | 1 | _aWeiss, Michael S. | |
245 | 1 | 0 |
_aAutomorphisms of Manifolds and Algebraic _K _-Theory : _bPart III. |
250 | _a1st ed. | ||
264 | 1 |
_aProvidence : _bAmerican Mathematical Society, _c2014. |
|
264 | 4 | _c©2014. | |
300 | _a1 online resource (122 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aMemoirs of the American Mathematical Society Series ; _vv.231 |
|
505 | 0 | _aCover -- Title page -- Chapter 1. Introduction -- Chapter 2. Outline of proof -- Chapter 3. Visible -theory revisited -- Chapter 4. The hyperquadratic -theory of a point -- Chapter 5. Excision and restriction in controlled -theory -- Chapter 6. Control and visible -theory -- Chapter 7. Control, stabilization and change of decoration -- Chapter 8. Spherical fibrations and twisted duality -- Chapter 9. Homotopy invariant characteristics and signatures -- Chapter 10. Excisive characteristics and signatures -- Chapter 11. Algebraic approximations to structure spaces: Set-up -- Chapter 12. Algebraic approximations to structure spaces: Constructions -- Chapter 13. Algebraic models for structure spaces: Proofs -- Appendix A. Homeomorphism groups of some stratified spaces -- Appendix B. Controlled homeomorphism groups -- Appendix C. -theory of pairs and diagrams -- Appendix D. Corrections and Elaborations -- Bibliography -- Back Cover. | |
520 | _aThe structure space \mathcal{S}(M) of a closed topological m-manifold M classifies bundles whose fibers are closed m-manifolds equipped with a homotopy equivalence to M. The authors construct a highly connected map from \mathcal{S}(M) to a concoction of algebraic L-theory and algebraic K-theory spaces associated with M. The construction refines the well-known surgery theoretic analysis of the block structure space of M in terms of L-theory. | ||
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aAutomorphisms. | |
650 | 0 | _aHomology theory. | |
650 | 0 | _aK-theory. | |
650 | 0 | _aManifolds (Mathematics). | |
655 | 4 | _aElectronic books. | |
700 | 1 | _aWilliams, Bruce E. | |
776 | 0 | 8 |
_iPrint version: _aWeiss, Michael S. _tAutomorphisms of Manifolds and Algebraic _K _-Theory: Part III _dProvidence : American Mathematical Society,c2014 _z9781470409814 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aMemoirs of the American Mathematical Society Series | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5295301 _zClick to View |
999 |
_c136273 _d136273 |