000 03292nam a22004933i 4500
001 EBC5295301
003 MiAaPQ
005 20240729131757.0
006 m o d |
007 cr cnu||||||||
008 240724s2014 xx o ||||0 eng d
020 _a9781470417208
_q(electronic bk.)
020 _z9781470409814
035 _a(MiAaPQ)EBC5295301
035 _a(Au-PeEL)EBL5295301
035 _a(OCoLC)887172396
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA612.7 .W38 2014
082 0 _a514/.34
100 1 _aWeiss, Michael S.
245 1 0 _aAutomorphisms of Manifolds and Algebraic
_K
_-Theory :
_bPart III.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2014.
264 4 _c©2014.
300 _a1 online resource (122 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society Series ;
_vv.231
505 0 _aCover -- Title page -- Chapter 1. Introduction -- Chapter 2. Outline of proof -- Chapter 3. Visible -theory revisited -- Chapter 4. The hyperquadratic -theory of a point -- Chapter 5. Excision and restriction in controlled -theory -- Chapter 6. Control and visible -theory -- Chapter 7. Control, stabilization and change of decoration -- Chapter 8. Spherical fibrations and twisted duality -- Chapter 9. Homotopy invariant characteristics and signatures -- Chapter 10. Excisive characteristics and signatures -- Chapter 11. Algebraic approximations to structure spaces: Set-up -- Chapter 12. Algebraic approximations to structure spaces: Constructions -- Chapter 13. Algebraic models for structure spaces: Proofs -- Appendix A. Homeomorphism groups of some stratified spaces -- Appendix B. Controlled homeomorphism groups -- Appendix C. -theory of pairs and diagrams -- Appendix D. Corrections and Elaborations -- Bibliography -- Back Cover.
520 _aThe structure space \mathcal{S}(M) of a closed topological m-manifold M classifies bundles whose fibers are closed m-manifolds equipped with a homotopy equivalence to M. The authors construct a highly connected map from \mathcal{S}(M) to a concoction of algebraic L-theory and algebraic K-theory spaces associated with M. The construction refines the well-known surgery theoretic analysis of the block structure space of M in terms of L-theory.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aAutomorphisms.
650 0 _aHomology theory.
650 0 _aK-theory.
650 0 _aManifolds (Mathematics).
655 4 _aElectronic books.
700 1 _aWilliams, Bruce E.
776 0 8 _iPrint version:
_aWeiss, Michael S.
_tAutomorphisms of Manifolds and Algebraic
_K
_-Theory: Part III
_dProvidence : American Mathematical Society,c2014
_z9781470409814
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society Series
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5295301
_zClick to View
999 _c136273
_d136273