000 | 11356nam a22005173i 4500 | ||
---|---|---|---|
001 | EBC5352680 | ||
003 | MiAaPQ | ||
005 | 20240724113138.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2018 xx o ||||0 eng d | ||
020 |
_a9781119363767 _q(electronic bk.) |
||
020 | _z9781119363484 | ||
035 | _a(MiAaPQ)EBC5352680 | ||
035 | _a(Au-PeEL)EBL5352680 | ||
035 | _a(CaPaEBR)ebr11547338 | ||
035 | _a(OCoLC)1031998836 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aSD387.C37 .B355 2018 | |
100 | 1 | _aBallerat-Busserolles, Karine. | |
245 | 1 | 0 | _aCutting-Edge Technology for Carbon Capture, Utilization, and Storage. |
250 | _a1st ed. | ||
264 | 1 |
_aNewark : _bJohn Wiley & Sons, Incorporated, _c2018. |
|
264 | 4 | _c©2018. | |
300 | _a1 online resource (387 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 | _aAdvances in Natural Gas Engineering Series | |
505 | 0 | _aCover -- Title Page -- Copyright Page -- Contents -- Preface -- Introduction -- Part I: Carbon Capture and Storage -- 1 Carbon Capture Storage Monitoring ("CCSM") -- 1.1 Introduction -- 1.2 State of the Art Practice -- 1.3 Marmot's CCSM Technology -- 1.4 Principles of Information Analysis -- 1.5 Operating Method -- 1.6 Instrumentation and Set up -- Abbreviations -- References -- 2 Key Technologies of Carbon Dioxide Flooding and Storage in China -- 2.1 Background -- 2.2 Key Technologies of Carbon dioxide Flooding and Storage -- 2.2.1 CO2 Miscible Flooding Theory in Continental Sedimentary Reservoirs -- 2.2.2 The Storage Mechanism of CO2 in Reservoirs and Salt Water Layers -- 2.2.3 Reservoir Engineering Technology of CO2 Flooding and Storage -- 2.2.4 High Efficiency Technology of Injection and Production for CO2 Flooding -- 2.2.5 CO2 Long-Distance Pipeline Transportation and Supercritical Injection Technology -- 2.2.6 Fluid Treatment and Circulating Gas Injection Technology of CO2 Flooding -- 2.2.7 Reservoir Monitoring and Dynamic Analysis and Evaluation Technology of CO2 Flooding -- 2.3 Existing Problems and Technical Development Direction -- 2.3.1 The Vital Communal Troubles & -- Challenges -- 2.3.2 Further Orientation of Technology Development -- 3 Mapping CCUS Technological Trajectories and Business Models: The Case of CO2-Dissolved -- 3.1 Introduction -- 3.2 CCS and Roadmaps: From Expectations to Reality ... -- 3.3 CCS Project Portfolio: Between Diversity and Replication -- 3.3.1 Demonstration Process: Between Diversity and Replication -- 3.3.2 Diversity of the Current Project Portfolio -- 3.4 Going Beyond EOR: Other Business Models for Storage? -- 3.4.1 The EOR Legacy -- 3.4.2 From EOR to a CCS Wide-Scale Deployment -- 3.5 Coupling CCS and Geothermal Energy: Lessons from the CO2-DISSOLVED Project Study -- 3.5.1 CO2-DISSOLVED Concept. | |
505 | 8 | _a3.5.2 Techno-Economic Analysis of CO2-DISSOLVED -- 3.5.3 Business Models and the Replication/Diversity Dilemma -- 3.6 Conclusion -- Acknowledgements -- References -- 4 Feasibility of Ex-Situ Dissolution for Carbon Dioxide Sequestration -- 4.1 Introduction -- 4.2 Methods to Accelerate Dissolution -- 4.2.1 In-situ -- 4.2.2 Ex-situ -- 4.3 Discussion and Conclusions -- Acknowledgments -- References -- Part II: EOR -- 5 CO2 Gas Injection as an EOR Technique - Phase Behavior Considerations -- 5.1 Introduction -- 5.2 Features of CO2 -- 5.3 Miscible CO2 Drive -- 5.4 Immiscible CO2 Drives and Density Effects -- 5.5 Asphaltene Precipitation Caused by Gas Injection -- 5.6 Gas Revaporization as EOR Technique -- 5.7 Conclusions -- List of Symbols -- References -- Appendix A Reservoir Fluid Compositions and Key Property Data -- 6 Study on Storage Mechanisms in CO2 Flooding for Water-Flooded Abandoned Reservoirs -- 6.1 Introduction -- 6.2 CO2 Solubility in Coexistence of Crude Oil and Brine -- 6.3 Mineral Dissolution Effect -- 6.4 Relative Permeability Hysteresis -- 6.5 Effect of CO2 Storage Mechanisms on CO2 Flooding -- 6.6 Conclusions -- References -- 7 The Investigation on the Key Hydrocarbons of Crude Oil Swelling via Supercritical CO2 -- 7.1 Introduction -- 7.2 Hydrocarbon Selection -- 7.3 Experiment Section -- 7.3.1 Principle -- 7.3.2 Apparatus and Samples -- 7.3.3 Experimental Scheme Design -- 7.3.4 Procedures -- 7.4 Results and Discussion -- 7.4.1 Results and Data Processing -- 7.4.2 Volume Swelling Influenced by the Hydrocarbon Property -- 7.4.3 A New Parameter of Molar Density for Evaluating Hydrocarbon Volume Swelling -- 7.4.4 Advantageous Hydrocarbons -- 7.5 Conclusions -- Acknowledgments -- Nomenclature -- References -- 8 Pore-Scale Mechanisms of Enhanced Oil Recovery by CO2 Injection in Low-Permeability Heterogeneous Reservoir -- 8.1 Introduction. | |
505 | 8 | _a8.2 Experimental Device and Samples -- 8.3 Experimental Procedure -- 8.3.1 Experimental Results -- 8.4 Quantitative Analysis of Oil Recovery in Different Scale Pores -- 8.5 Conclusions -- Acknowledgments -- References -- Part III: Data - Experimental and Correlation -- 9 Experimental Measurement of CO2 Solubility in a 1 mol/kgw CaCl2 Solution at Temperature from 323.15 to 423.15 K and Pressure up to 20 MPa -- 9.1 Introduction -- 9.2 Literature Review -- 9.3 Experimental Section -- 9.3.1 Chemicals -- 9.3.2 Apparatus -- 9.3.3 Operating Procedure -- 9.3.4 Analysis -- 9.4 Results and Discussion -- 9.5 Conclusion -- Acknowledgments -- References -- 10 Determination of Dry-Ice Formation during the Depressurization of a CO2 Re-Injection System -- 10.1 Introduction -- 10.2 Thermodynamics -- 10.3 Case Study -- 10.3.1 System Description -- 10.3.2 Objectives -- 10.3.3 Scenarios -- 10.3.4 Simulation Runs Conclusions -- 10.4 Conclusions -- 11 Phase Equilibrium Properties Aspects of CO2 and Acid Gases Transportation -- 11.1 Introduction -- 11.1.1 State of the Art and Phase Diagrams -- 11.2 Experimental Work and Description of Experimental Setup -- 11.3 Models and Correlation Useful for the Determination of Equilibrium Properties -- 11.4 Presentation of Some Results -- 11.5 Conclusion -- Acknowledgments -- References -- 12 Thermodynamic Aspects for Acid Gas Removal from Natural Gas -- 12.1 Introduction -- 12.2 Thermodynamic Models -- 12.3 Results and Discussion -- 12.3.1 Hydrocarbons and Mercaptans Solubilities in Aqueous Alkanolamine Solution -- 12.3.2 Acid Gases (CO2/H2S) Solubilities in Aqueous Alkanolamine Solution -- 12.3.3 Multi-component Systems Containing CO2-H2SAlkanolamine-Water-Methane-Mercaptan -- 12.4 Conclusion and Perspectives -- Acknowledgements -- References -- 13 Speed of Sound Measurements for a CO2 Rich Mixture -- 13.1 Experimental Section. | |
505 | 8 | _a13.1.1 Material -- 13.1.2 Experimental Setup -- 13.2 Results and Discussion -- 13.3 Conclusion -- References -- 14 Mutual Solubility of Water and Natural Gas with Different CO2 Content -- 14.1 Introduction -- 14.2 Experimental -- 14.2.1 Materials -- 14.2.2 Experimental Apparatus -- 14.2.3 Experimental Procedures -- 14.3 Thermodynamic Model -- 14.3.1 The Cubic-Plus-Association Equation of State -- 14.3.2 Parameterization of the Model -- 14.4 Results and Discussion -- 14.4.1 Phase Behavior of CO2-Water -- 14.4.2 The Mutual Solubility of Water-Natural Gas -- 14.5 Conclusion -- Acknowledgement -- References -- 15 Effect of SO2 Traces on Metal Mobilization in CCS -- 15.1 Introduction -- 15.2 Experimental -- 15.2.1 Sample Preparation -- 15.2.1.1 Sandstone -- 15.2.1.2 Brine -- 15.2.2 Experimental Set-up -- 15.2.3 Experimental Methodology -- 15.3 Results and Discussion -- 15.3.1 Major Components -- 15.3.2 Trace Metals -- 15.3.2.1 Strontium -- 15.3.2.2 Manganese -- 15.3.2.3 Copper -- 15.3.2.4 Zinc -- 15.3.2.5 Vanadium -- 15.3.2.6 Lead -- 15.3.3 Metal Mobilization -- 15.4 Conclusions -- Acknowledgements -- References -- 16 Experiments and Modeling for CO2 Capture Processes Understanding -- 16.1 Introduction -- 16.2 Chemicals and Materials -- 16.3 Vapor-Liquid Equilibria -- 16.3.1 Experimental VLE of Pure Amine -- 16.3.2 Experimental VLE of {Amine - H2O} System -- 16.3.3 Modeling VLE -- 16.4 Speciation at Equilibrium -- 16.4.1 Equilibrium Measurements 1H and 13C NMR -- 16.4.2 Modeling of Species Concentration -- Acknowledgment -- References -- Part IV: Molecular Simulation -- 17 Kinetic Monte Carlo Molecular Simulation of Chemical Reaction Equilibria -- References -- 18 Molecular Simulation Study on the Diffusion Mechanism of Fluid in Nanopores of Illite in Shale Gas Reservoir -- 18.1 Introduction -- 18.2 Models and Simulation Details. | |
505 | 8 | _a18.2.1 Models and Simulation Parameters -- 18.2.2 Data Processing and Computing Methods -- 18.3 Results and Discussion -- 18.3.1 Variation Law of Self Diffusion Coefficient -- 18.3.2 Density Distribution -- 18.3.3 Radial Distribution Function -- 18.4 Conclusions -- Acknowledgements -- References -- 19 Molecular Simulation of Reactive Absorption of CO2 in Aqueous Alkanolamine Solutions -- References -- Part V: Processes -- 20 CO2 Capture from Natural Gas in LNG Production. Comparison of Low-Temperature Purification Processes and Conventional Amine Scrubbing -- 20.1 Introduction -- 20.2 Description of Process Solutions -- 20.2.1 The Ryan-Holmes Process -- 20.2.2 The Dual Pressure Low-Temperature Distillation Process -- 20.2.3 The Chemical Absorption Process -- 20.3 Methods -- 20.4 Results and Discussion -- 20.5 Conclusions -- Nomenclature -- Abbreviations -- Symbols -- Subscripts -- Superscripts -- Greek Symbols -- References -- 21 CO2 Capture Using Deep Eutectic Solvent and Amine (MEA) Solution -- 21.1 Experimental Section -- 21.2 Results and Discussion -- 21.2.1 Validation of the Experimental Method -- 21.2.2 Solubility of CO2 in the Solvent DES/MEA -- 21.2.3 Solubility of CO2 - Comparison Between DES + MEA and DES Solvent -- 21.2.4 Solubility of CO2 - Comparison Between (DES + MEA) and (H2O + MEA) Solvent -- 21.5 Conclusion -- References -- 22 The Impact of Thermodynamic Model Accuracy on Sizing and Operating CCS Purification and Compression Units -- 22.1 Introduction -- 22.2 Thermodynamic Systems in CCUS Technologies -- 22.2.1 Compositional Characteristics of CO2 Captured Flows -- 22.2.2 Post-Combustion -- 22.2.3 Oxy-Fuel Combustion -- 22.2.4 Pre-Combustion -- 22.3 Operating Conditions of Purification and Compression Units -- 22.4 Quality Specifications of CO2 Capture Flows -- 22.5 Cubic Equations of State for CCUS Fluids. | |
505 | 8 | _a22.6 Influence of EoS Accuracy on Purification and Compression Processes. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aCarbon sequestration-Technological innovations. | |
655 | 4 | _aElectronic books. | |
700 | 1 | _aWu, Ying. | |
700 | 1 | _aCarroll, John J. | |
776 | 0 | 8 |
_iPrint version: _aBallerat-Busserolles, Karine _tCutting-Edge Technology for Carbon Capture, Utilization, and Storage _dNewark : John Wiley & Sons, Incorporated,c2018 _z9781119363484 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aAdvances in Natural Gas Engineering Series | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5352680 _zClick to View |
999 |
_c1334 _d1334 |