000 02019nam a22004333i 4500
001 EBC5157319
003 MiAaPQ
005 20240729131619.0
006 m o d |
007 cr cnu||||||||
008 240724s2017 xx o ||||0 eng d
020 _a9783110520651
_q(electronic bk.)
020 _z9783110518702
035 _a(MiAaPQ)EBC5157319
035 _a(Au-PeEL)EBL5157319
035 _a(CaPaEBR)ebr11497577
035 _a(OCoLC)1020026051
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA9.64 .F369 2018
100 1 _aLi, Fanzhang.
245 1 0 _aDynamic Fuzzy Machine Learning.
250 _a1st ed.
264 1 _aBerlin/Boston :
_bWalter de Gruyter GmbH,
_c2017.
264 4 _c©2018.
300 _a1 online resource (338 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
505 0 _aIntro -- Preface -- Contents -- 1. Dynamic fuzzy machine learning model -- 2. Dynamic fuzzy autonomic learning subspace algorithm -- 3. Dynamic fuzzy decision tree learning -- 4. Concept learning based on dynamic fuzzy sets -- 5. Semi-supervised multi-task learning based on dynamic fuzzy sets -- 6. Dynamic fuzzy hierarchical relationships -- 7. Multi-agent learning model based on dynamic fuzzy logic -- 8. Appendix -- Index.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aFuzzy logic.
655 4 _aElectronic books.
700 1 _aZhang, Li.
700 1 _aZhang, Zhao.
776 0 8 _iPrint version:
_aLi, Fanzhang
_tDynamic Fuzzy Machine Learning
_dBerlin/Boston : Walter de Gruyter GmbH,c2017
_z9783110518702
797 2 _aProQuest (Firm)
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5157319
_zClick to View
999 _c133195
_d133195