000 03561nam a22004933i 4500
001 EBC5110284
003 MiAaPQ
005 20240729131535.0
006 m o d |
007 cr cnu||||||||
008 240724s2017 xx o ||||0 eng d
020 _a9781470441357
_q(electronic bk.)
020 _z9781470425760
035 _a(MiAaPQ)EBC5110284
035 _a(Au-PeEL)EBL5110284
035 _a(CaPaEBR)ebr11491786
035 _a(OCoLC)1005658259
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA169 .G363 2017
082 0 _a512.62
100 1 _aGambino, Nicola.
245 1 0 _aOn Operads, Bimodules and Analytic Functors.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2017.
264 4 _c©2017.
300 _a1 online resource (122 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.249
505 0 _aCover -- Title page -- Introduction -- Chapter 1. Background -- 1.1. Review of bicategory theory -- 1.2. \catV-categories and presentable \catV-categories -- 1.3. Distributors -- Chapter 2. Monoidal distributors -- 2.1. Monoidal \catV-categories and \catV-rigs -- 2.2. Monoidal distributors -- 2.3. Symmetric monoidal \catV-categories and symmetric \catV-rigs -- 2.4. Symmetric monoidal distributors -- Chapter 3. Symmetric sequences -- 3.1. Free symmetric monoidal \catV-categories -- 3.2. -distributors -- 3.3. Symmetric sequences and analytic functors -- 3.4. Cartesian closure of categorical symmetric sequences -- Chapter 4. The bicategory of operad bimodules -- 4.1. Monads, modules and bimodules -- 4.2. Tame bicategories and bicategories of bimodules -- 4.3. Monad morphisms and bimodules -- 4.4. Tameness of bicategories of symmetric sequences -- 4.5. Analytic functors -- Chapter 5. Cartesian closure of operad bimodules -- 5.1. Cartesian closed bicategories of bimodules -- 5.2. Monad theory in tame bicategories -- 5.3. Monad theory in bicategories of bimodules -- 5.4. Bicategories of bimodules as Eilenberg-Moore completions -- Appendix A. A compendium of bicategorical definitions -- Appendix B. A technical proof -- B.1. Preliminaries -- B.2. The proof -- Bibliography -- Back Cover.
520 _aThe authors develop further the theory of operads and analytic functors. In particular, they introduce the bicategory \operatorname{OpdBim}_{\mathcal{V}} of operad bimodules, that has operads as 0-cells, operad bimodules as 1-cells and operad bimodule maps as 2-cells, and prove that it is cartesian closed. In order to obtain this result, the authors extend the theory of distributors and the formal theory of monads.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aOperads.
650 0 _aFunctor theory.
650 0 _aAlgebra, Homological.
655 4 _aElectronic books.
700 1 _aJoyal, André.
776 0 8 _iPrint version:
_aGambino, Nicola
_tOn Operads, Bimodules and Analytic Functors
_dProvidence : American Mathematical Society,c2017
_z9781470425760
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5110284
_zClick to View
999 _c131796
_d131796