000 03507nam a22004933i 4500
001 EBC5110283
003 MiAaPQ
005 20240729131535.0
006 m o d |
007 cr cnu||||||||
008 240724s2017 xx o ||||0 eng d
020 _a9781470441333
_q(electronic bk.)
020 _z9781470425654
035 _a(MiAaPQ)EBC5110283
035 _a(Au-PeEL)EBL5110283
035 _a(CaPaEBR)ebr11491785
035 _a(OCoLC)1005658258
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA326 .H974 2017
082 0 _a512.556
100 1 _aJunge, Marius.
245 1 0 _aHypercontractivity in Group von Neumann Algebras.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2017.
264 4 _c©2017.
300 _a1 online resource (102 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.249
505 0 _aCover -- Title page -- Introduction -- Chapter 1. The combinatorial method -- 1.1. Notation -- 1.2. Aim of the method -- 1.3. Admissible lengths -- 1.4. Completing squares I -- 1.5. A decomposition of ᵤ( ) -- 1.6. Completing squares II -- 1.7. Analysis of both approaches -- 1.8. Λ-estimates -- 1.9. Δ-estimates -- 1.10. Strategy -- Chapter 2. Optimal time estimates -- 2.1. Free groups -- 2.2. Triangular groups -- 2.3. Finite cyclic groups -- 2.4. Comments -- Chapter 3. Poisson-like lengths -- 3.1. Proof of Theorem B -- 3.2. Behavior of the constant (\G, ) -- 3.3. Examples of Poisson-like lengths -- 3.4. Ultracontractivity -- Appendix A. Logarithmic Sobolev inequalities -- Appendix B. The word length in ℤ_{ } -- Appendix C. Numerical analysis -- C.1. Estimates for free groups -- C.2. Estimates for triangular groups -- C.3. Estimates for finite cyclic groups -- Appendix D. Technical inequalities -- D.0. Positivity test for polynomials -- D.1. Technical inequalities for free groups -- D.2. Technical inequalities for triangular groups -- D.3. Technical inequalities for finite cyclic groups -- D.4. Proofs -- Bibliography -- Back Cover.
520 _aIn this paper, the authors provide a combinatorial/numerical method to establish new hypercontractivity estimates in group von Neumann algebras. They illustrate their method with free groups, triangular groups and finite cyclic groups, for which they obtain optimal time hypercontractive L_2 \to L_q inequalities with respect to the Markov process given by the word length and with q an even integer. Interpolation and differentiation also yield general L_p \to L_q hypercontrativity for 1.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aVon Neumann algebras.
650 0 _aGroup algebras.
655 4 _aElectronic books.
700 1 _aPalazuelos, Carlos.
700 1 _aParcet, Javier.
776 0 8 _iPrint version:
_aJunge, Marius
_tHypercontractivity in Group von Neumann Algebras
_dProvidence : American Mathematical Society,c2017
_z9781470425654
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5110283
_zClick to View
999 _c131795
_d131795