000 06742nam a22005293i 4500
001 EBC5110278
003 MiAaPQ
005 20240729131535.0
006 m o d |
007 cr cnu||||||||
008 240724s2017 xx o ||||0 eng d
020 _a9781470442248
_q(electronic bk.)
020 _z9781470427733
035 _a(MiAaPQ)EBC5110278
035 _a(Au-PeEL)EBL5110278
035 _a(CaPaEBR)ebr11491782
035 _a(OCoLC)1018246138
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA851 .C66 2017
082 0 _a515
100 1 _aBlokh, Alexander M.
245 1 0 _aDynamical Systems, Ergodic Theory, and Probability :
_bin Memory of Kolya Chernov.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2017.
264 4 _c©2017.
300 _a1 online resource (330 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aContemporary Mathematics ;
_vv.698
505 0 _aCover -- Title page -- Contents -- Preface -- N. I. CHERNOV (1956-2014) -- Joint coboundaries -- 1. Introduction -- 2. Role of coboundaries in rate of norm convergence -- 3. Algebra gives common coboundaries -- 4. Coboundaries and automatic continuity -- 5. Generic case for no common coboundaries -- 6. General cases -- 7. Joint under powers -- 8. Various constructions -- 9. Constructions that are not coboundaries -- 10. First Category -- 11. Finite step function coboundaries -- 12. Weak mixing coboundaries -- 13. Unresolved Issues -- Acknowledgments -- References -- Convergence of moments for dispersing billiards with cusps -- 1. Introduction -- 2. Billiards with cusps -- 3. Proof of Theorem 4 -- 4. Young tower and equidistribution for -- 5. Proof of Lemma 3.1 -- 6. Proof of Lemma 3.3 -- Appendix A. A probabilistic model -- Appendix B. Proof of Proposition 1.4 -- References -- Weak pseudo-physical measures and Pesin's entropy formula for Anosov ¹-diffeomorphisms. -- 1. Introduction -- 2. Properties of the weak pseudo-physical measures -- 3. Sufficient condition for Pesin's Entropy Formula -- 4. Necessary condition for Pesin's Entropy Formula -- References -- No-slip billiards in dimension two -- 1. Introduction -- 2. Periodic and bounded orbits -- 3. Other examples of no-slip billiards -- References -- How sticky is the chaos/order boundary? -- 1. Introduction -- 2. Previous results -- 3. Development of the theory -- 4. Proofs of the theorems -- 5. Lemmas and their proofs -- Acknowledgements -- References -- Bouncing in gravitational field -- 1. Introduction -- 2. Statement of the result -- 3. Three Lemmas -- 4. Proof of the Theorem -- 5. Local versus global minimizers -- References -- A derivation of the Poisson law for returns of smooth maps with certain geometrical properties -- 1. Introduction -- 2. Assumptions and main results.
505 8 _a3. Proof of Theorem 1 -- 4. Very short returns -- 5. Poisson approximation theorem -- 6. Proof of Theorem 2 -- 7. Example -- References -- Rigidity for a class of generalized interval exchange transformations -- 1. Introduction and statement of the results -- 2. Proof of the main theorem -- References -- Homotopical complexity of a 3 billiard flow -- 1. Introduction -- 2. Prerequisites. Model and Geometry of Orbits -- 3. The admissible rotation set -- 4. Comparing our results with geodesic flows -- 5. Topological entropy of the flow -- Acknowledgment -- References -- Mixing properties of some maps with countable Markov partitions -- 1. Statement of results -- 2. Hölder properties of log( ^{ } ( )) in the phase space. -- 3. Proof of the main theorem -- 4. One model with strong contraction -- Acknowledgments -- References -- Eigenfunctions of Laplacians in some two-dimensional domains -- 1. Introduction -- 2. Discrete Approximations of Laplacians -- Acknowledgments -- References -- Multidimensional hyperbolic billiards -- 1. Introduction -- 2. A summary -- 3. Qualitative properties of multidimensional billiards -- 4. Quantitative properties of multidimensional billiards -- Acknowledgements -- References -- Homoclinic intersections for geodesic flows on convex spheres -- 1. Introduction -- 2. Preliminaries -- 3. Perturbations of closed geodesics -- 4. Homoclinic intersections for hyperbolic closed geodesics -- Acknowledgments -- References -- Decay of correlations for billiards with flat points I: channel effects -- 1. Background and the main results -- 2. General scheme -- 3. Construction of the induced map ( , ) -- 4. Uniform Hyperbolicity of ( , ,\hmu) -- 5. Distribution of the first return time function -- 6. Singularity set of the induced map ( , ) -- 7. Regularity of unstable curves -- 8. Exponential decay rates for the induced system.
505 8 _a9. Proof of the main Theorems. -- 10. Proof of Proposition 10 -- Acknowledgment -- References -- Decay of correlations for billiards with flat points II: cusps effect -- 1. Background and the main results. -- 2. General scheme -- 3. The corner series -- 4. Hyperbolicity of ( , ) -- 5. Distribution of the return time function -- 6. Exponential decay rates for the induced system -- 7. Proof of the main Theorems -- 8. General models with cusps -- 9. Appendix: Proof of Proposition 4. -- Acknowledgement -- References -- Back Cover.
520 _aThis volume contains the proceedings of the Conference on Dynamical Systems, Ergodic Theory, and Probability, which was dedicated to the memory of Nikolai Chernov, held from May 18-20, 2015, at the University of Alabama at Birmingham, Birmingham, Alabama. The book is devoted to recent advances in the theory of chaotic and weakly chaotic dynamical systems and its applications to statistical mechanics. The papers present new original results as well as comprehensive surveys.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aChernov, Nikolai,-1956-2014.
650 0 _aDynamics-Congresses.
650 0 _aChaotic behavior in systems-Congresses.
655 4 _aElectronic books.
700 1 _aBunimovich, Leonid A.
700 1 _aJung, Paul H.
776 0 8 _iPrint version:
_aBlokh, Alexander M.
_tDynamical Systems, Ergodic Theory, and Probability: in Memory of Kolya Chernov
_dProvidence : American Mathematical Society,c2017
_z9781470427733
797 2 _aProQuest (Firm)
830 0 _aContemporary Mathematics
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5110278
_zClick to View
999 _c131791
_d131791