000 | 06035nam a22004453i 4500 | ||
---|---|---|---|
001 | EBC5061568 | ||
003 | MiAaPQ | ||
005 | 20240729131509.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2017 xx o ||||0 eng d | ||
020 |
_a9781118578315 _q(electronic bk.) |
||
020 | _z9781848213753 | ||
035 | _a(MiAaPQ)EBC5061568 | ||
035 | _a(Au-PeEL)EBL5061568 | ||
035 | _a(CaPaEBR)ebr11447569 | ||
035 | _a(OCoLC)1004960815 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQD921.F747 2017 | |
082 | 0 | _a548.842 | |
100 | 1 | _aFressengeas, Claude. | |
245 | 1 | 0 | _aMechanics of Dislocation Fields. |
250 | _a1st ed. | ||
264 | 1 |
_aNewark : _bJohn Wiley & Sons, Incorporated, _c2017. |
|
264 | 4 | _c©2017. | |
300 | _a1 online resource (249 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
505 | 0 | _aCover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Acknowledgements -- Introduction -- 1. Continuous Dislocation Modeling -- 1.1. Introduction -- 1.2. Lattice incompatibility -- 1.3. Burgers vector -- 1.4. Compatibility conditions -- 1.5. Dislocation fields -- 1.6. Tangential continuity at interfaces -- 1.7. Curvatures and rotational incompatibiliy -- 1.8. Incompatibility tensor -- 1.9. Conclusion -- 1.10. Problems -- 1.10.1. Discrete versus continuous modeling of crystal defects -- 1.10.2. Incompatibility in simple shear -- 1.10.3. Frank's relation -- 1.11. Solutions -- 1.11.1. Discrete versus continuous modeling of crystal defects -- 1.11.2. Incompatibility in simple shear -- 1.11.3. Frank's relation -- 2. Elasto-static Field Equations -- 2.1. Introduction -- 2.2. Elasto-static solution to field equations -- 2.2.1. Stokes-Helmholtz decomposition and Poisson-type equations -- 2.2.2. Navier-type equations for compatible elastic distortion fields -- 2.3. Straight screw dislocation in a linear isotropic elastic medium -- 2.4. Straight edge dislocation in a linear isotropic elastic medium -- 2.5. Conclusion -- 2.6. Problems -- 2.6.1. Screw dislocation -- 2.6.2. Twist boundary -- 2.6.3. Tilt boundary -- 2.6.4. Zero-stress everywhere dislocation fields -- 2.7. Solutions -- 2.7.1. Screw dislocation -- 2.7.2. Twist boundary -- 2.7.3. Tilt boundary -- 2.7.4. Zero-stress everywhere dislocation fields -- 3. Dislocation Transport -- 3.1. Introduction -- 3.2. Dislocation flux and plastic distortion rate -- 3.3. Coarse graining -- 3.4. Compatibility versus incompatibility of plasticity -- 3.5. Tangential continuity of plastic distortion rate -- 3.6. Transport equations -- 3.6.1. Small transformations -- 3.6.2. Finite transformations -- 3.7. Transport waves -- 3.7.1. Annihilation -- 3.7.2. Expansion of dislocation loops. | |
505 | 8 | _a3.7.3. Initiation of a Frank-Read source -- 3.8. Numerical algorithms for dislocation transport -- 3.9. Conclusion -- 3.10. Problems -- 3.10.1. Propagation of a discontinuous dislocation density -- 3.10.2. Dislocation loop expansion -- 3.10.3. Stability / instability of homogeneous dislocation distributions -- 3.10.4. Dislocation nucleation -- 3.11. Solutions -- 3.11.1. Propagation of a discontinuous dislocation density -- 3.11.2. Expansion of dislocation loops -- 3.11.3. Stability / instability of homogeneous dislocation distributions -- 3.11.4. Dislocation nucleation -- 4. Constitutive Relations -- 4.1. Introduction -- 4.2. Dissipation -- 4.3. Pressure independence -- 4.4. Dislocation climb versus dislocation glide -- 4.5. Viscoplastic relationships -- 4.6. Coarse graining -- 4.7. Contact with conventional crystal plasticity -- 5. Elasto-plastic Field Equations -- 5.1. Introduction -- 5.2. Fundamental field equations -- 5.3. Boundary conditions -- 5.4. Coarse graining -- 5.5. Resolution algorithm -- 5.6. Reduced field equations -- 5.6.1. Plane dislocations -- 5.7. Augmented crystal plasticity -- 5.8. Dynamics of a twist boundary -- 5.9. Conclusion -- 5.10. Problems -- 5.10.1. Helical dislocations -- 5.11. Solutions -- 5.11.1. Helical dislocations -- 6. Case Studies -- 6.1. Introduction -- 6.2. Dislocation core structure -- 6.3. Piezoelectricity and dislocations -- 6.3.1. Coupling piezoelectricity, lattice incompatibility and transport -- 6.3.2. Piezoelectric polarization and dislocations in GaN layers -- 6.3.3. Dislocation transport and electric displacement in GaN layers -- 6.4. Intermittent plasticity -- 6.5. Effects of size on mechanical response -- 6.6. Complex loading paths -- 6.7. Strain localization -- 6.7.1. Experimental data in Al-Cu-Li alloys -- 6.7.2. Simulation results -- 7. Review and Conclusions. | |
505 | 8 | _a7.1. Comparisons with conventional crystal plasticity -- 7.2. Alternative approaches -- 7.2.1. Peierls-Nabarro model -- 7.2.2. Atomistic simulations -- 7.2.3. Phase field methods -- 7.2.4. Discrete dislocation dynamics -- 7.3. Shortcomings and extensions -- 7.3.1. Fracture and disconnections -- 7.3.2. Rotational incompatibility and disclinations -- 7.3.3. Phase transformation and generalized disclinations -- 7.4. Final remarks -- Appendix: Complements -- A.1. Stokes' theorem -- A.2. Characterization of the compatibility of a tensor field -- A.3. Stokes-Helmholtz decomposition -- A.4. Second-order Riemann-Graves operator -- Bibliography -- Index -- Other titles from iSTE in Materials Science -- EULA. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aDislocations in crystals. | |
655 | 4 | _aElectronic books. | |
776 | 0 | 8 |
_iPrint version: _aFressengeas, Claude _tMechanics of Dislocation Fields _dNewark : John Wiley & Sons, Incorporated,c2017 _z9781848213753 |
797 | 2 | _aProQuest (Firm) | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5061568 _zClick to View |
999 |
_c131039 _d131039 |