000 03614nam a22004813i 4500
001 EBC4908293
003 MiAaPQ
005 20240729131329.0
006 m o d |
007 cr cnu||||||||
008 240724s2017 xx o ||||0 eng d
020 _a9781470437039
_q(electronic bk.)
020 _z9781470436957
035 _a(MiAaPQ)EBC4908293
035 _a(Au-PeEL)EBL4908293
035 _a(CaPaEBR)ebr11409838
035 _a(OCoLC)982296761
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA274.4.L453 2017
082 0 _a519.23
100 1 _aJan, Yves Le.
245 1 0 _aIntersection Local Times, Loop Soups and Permanental Wick Powers.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2017.
264 4 _c©2017.
300 _a1 online resource (92 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.247
505 0 _aCover -- Title page -- Chapter 1. Introduction -- Chapter 2. Loop measures and renormalized intersection local times -- 2.1. Renormalized intersection local times -- 2.2. Bounds for the error terms -- Chapter 3. Continuity of intersection local time processes -- Chapter 4. Loop soup and permanental chaos -- Chapter 5. Isomorphism Theorem I -- Chapter 6. Permanental Wick powers -- Chapter 7. Poisson chaos decomposition, I -- Chapter 8. Loop soup decomposition of permanental Wick powers -- Chapter 9. Poisson chaos decomposition, II -- 9.1. Exponential Poisson chaos -- 9.2. Extensions to martingales -- Chapter 10. Convolutions of regularly varying functions -- References -- Back Cover.
520 _aSeveral stochastic processes related to transient Lévy processes with potential densities u(x,y)=u(y-x), that need not be symmetric nor bounded on the diagonal, are defined and studied. They are real valued processes on a space of measures \mathcal{V} endowed with a metric d. Sufficient conditions are obtained for the continuity of these processes on (\mathcal{V},d). The processes include n-fold self-intersection local times of transient Lévy processes and permanental chaoses, which are `loop soup n-fold self-intersection local times' constructed from the loop soup of the Lévy process. Loop soups are also used to define permanental Wick powers, which generalizes standard Wick powers, a class of n-th order Gaussian chaoses. Dynkin type isomorphism theorems are obtained that relate the various processes. Poisson chaos processes are defined and permanental Wick powers are shown to have a Poisson chaos decomposition. Additional properties of Poisson chaos processes are studied and a martingale extension is obtained for many of the processes described above.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aGaussian processes.
655 4 _aElectronic books.
700 1 _aMarcus, Michael B.
700 1 _aRosen, Jay.
776 0 8 _iPrint version:
_aJan, Yves Le
_tIntersection Local Times, Loop Soups and Permanental Wick Powers
_dProvidence : American Mathematical Society,c2017
_z9781470436957
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4908293
_zClick to View
999 _c128035
_d128035