000 04114nam a22004933i 4500
001 EBC4908275
003 MiAaPQ
005 20240729131328.0
006 m o d |
007 cr cnu||||||||
008 240724s2017 xx o ||||0 eng d
020 _a9781470436070
_q(electronic bk.)
020 _z9781470422608
035 _a(MiAaPQ)EBC4908275
035 _a(Au-PeEL)EBL4908275
035 _a(CaPaEBR)ebr11409821
035 _a(OCoLC)967922979
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA387.L677 2017
082 0 _a514.32500000000005
100 1 _aHofmann, Steve.
245 1 0 _a
_L^{p}
_-Square Function Estimates on Spaces of Homogeneous Type and on Uniformly Rectifiable Sets.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2017.
264 4 _c©2016.
300 _a1 online resource (120 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.245
505 0 _aCover -- Title page -- Chapter 1. Introduction -- Chapter 2. Analysis and Geometry on Quasi-Metric Spaces -- 2.1. A metrization result for general quasi-metric spaces -- 2.2. Geometrically doubling quasi-metric spaces -- 2.3. Approximations to the identity on quasi-metric spaces -- 2.4. Dyadic Carleson tents -- Chapter 3. (1) and local ( ) Theorems for Square Functions -- 3.1. An arbitrary codimension (1) theorem for square functions -- 3.2. An arbitrary codimension local ( ) theorem for square functions -- Chapter 4. An Inductive Scheme for Square Function Estimates -- Chapter 5. Square Function Estimates on Uniformly Rectifiable Sets -- 5.1. Square function estimates on Lipschitz graphs -- 5.2. Square function estimates on (BP)^{ }LG sets -- 5.3. Square function estimates for integral operators with variable kernels -- Chapter 6. ^{ } Square Function Estimates -- 6.1. Mixed norm spaces -- 6.2. Estimates relating the Lusin and Carleson operators -- 6.3. Weak ^{ } square function estimates imply ² square function estimates -- 6.4. Extrapolating square function estimates -- Chapter 7. Conclusion -- References -- Back Cover.
520 _aThe authors establish square function estimates for integral operators on uniformly rectifiable sets by proving a local T(b) theorem and applying it to show that such estimates are stable under the so-called big pieces functor. More generally, they consider integral operators associated with Ahlfors-David regular sets of arbitrary codimension in ambient quasi-metric spaces. The local T(b) theorem is then used to establish an inductive scheme in which square function estimates on so-called big pieces of an Ahlfors-David regular set are proved to be sufficient for square function estimates to hold on the entire set. Extrapolation results for L^p and Hardy space versions of these estimates are also established. Moreover, the authors prove square function estimates for integral operators associated with variable coefficient kernels, including the Schwartz kernels of pseudodifferential operators acting between vector bundles on subdomains with uniformly rectifiable boundaries on manifolds.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aHomogeneous spaces.
655 4 _aElectronic books.
700 1 _aMitrea, Dorina.
700 1 _aMitrea, Marius.
700 1 _aMorris, Andrew J.
776 0 8 _iPrint version:
_aHofmann, Steve
_t
_L^{p}
_-Square Function Estimates on Spaces of Homogeneous Type and on Uniformly Rectifiable Sets
_dProvidence : American Mathematical Society,c2017
_z9781470422608
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4908275
_zClick to View
999 _c128019
_d128019