000 | 04114nam a22004933i 4500 | ||
---|---|---|---|
001 | EBC4908275 | ||
003 | MiAaPQ | ||
005 | 20240729131328.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2017 xx o ||||0 eng d | ||
020 |
_a9781470436070 _q(electronic bk.) |
||
020 | _z9781470422608 | ||
035 | _a(MiAaPQ)EBC4908275 | ||
035 | _a(Au-PeEL)EBL4908275 | ||
035 | _a(CaPaEBR)ebr11409821 | ||
035 | _a(OCoLC)967922979 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA387.L677 2017 | |
082 | 0 | _a514.32500000000005 | |
100 | 1 | _aHofmann, Steve. | |
245 | 1 | 0 |
_a _L^{p} _-Square Function Estimates on Spaces of Homogeneous Type and on Uniformly Rectifiable Sets. |
250 | _a1st ed. | ||
264 | 1 |
_aProvidence : _bAmerican Mathematical Society, _c2017. |
|
264 | 4 | _c©2016. | |
300 | _a1 online resource (120 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aMemoirs of the American Mathematical Society ; _vv.245 |
|
505 | 0 | _aCover -- Title page -- Chapter 1. Introduction -- Chapter 2. Analysis and Geometry on Quasi-Metric Spaces -- 2.1. A metrization result for general quasi-metric spaces -- 2.2. Geometrically doubling quasi-metric spaces -- 2.3. Approximations to the identity on quasi-metric spaces -- 2.4. Dyadic Carleson tents -- Chapter 3. (1) and local ( ) Theorems for Square Functions -- 3.1. An arbitrary codimension (1) theorem for square functions -- 3.2. An arbitrary codimension local ( ) theorem for square functions -- Chapter 4. An Inductive Scheme for Square Function Estimates -- Chapter 5. Square Function Estimates on Uniformly Rectifiable Sets -- 5.1. Square function estimates on Lipschitz graphs -- 5.2. Square function estimates on (BP)^{ }LG sets -- 5.3. Square function estimates for integral operators with variable kernels -- Chapter 6. ^{ } Square Function Estimates -- 6.1. Mixed norm spaces -- 6.2. Estimates relating the Lusin and Carleson operators -- 6.3. Weak ^{ } square function estimates imply ² square function estimates -- 6.4. Extrapolating square function estimates -- Chapter 7. Conclusion -- References -- Back Cover. | |
520 | _aThe authors establish square function estimates for integral operators on uniformly rectifiable sets by proving a local T(b) theorem and applying it to show that such estimates are stable under the so-called big pieces functor. More generally, they consider integral operators associated with Ahlfors-David regular sets of arbitrary codimension in ambient quasi-metric spaces. The local T(b) theorem is then used to establish an inductive scheme in which square function estimates on so-called big pieces of an Ahlfors-David regular set are proved to be sufficient for square function estimates to hold on the entire set. Extrapolation results for L^p and Hardy space versions of these estimates are also established. Moreover, the authors prove square function estimates for integral operators associated with variable coefficient kernels, including the Schwartz kernels of pseudodifferential operators acting between vector bundles on subdomains with uniformly rectifiable boundaries on manifolds. | ||
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aHomogeneous spaces. | |
655 | 4 | _aElectronic books. | |
700 | 1 | _aMitrea, Dorina. | |
700 | 1 | _aMitrea, Marius. | |
700 | 1 | _aMorris, Andrew J. | |
776 | 0 | 8 |
_iPrint version: _aHofmann, Steve _t _L^{p} _-Square Function Estimates on Spaces of Homogeneous Type and on Uniformly Rectifiable Sets _dProvidence : American Mathematical Society,c2017 _z9781470422608 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aMemoirs of the American Mathematical Society | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4908275 _zClick to View |
999 |
_c128019 _d128019 |