000 | 04992nam a22004813i 4500 | ||
---|---|---|---|
001 | EBC4908273 | ||
003 | MiAaPQ | ||
005 | 20240729131328.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2017 xx o ||||0 eng d | ||
020 |
_a9781470436032 _q(electronic bk.) |
||
020 | _z9781470422493 | ||
035 | _a(MiAaPQ)EBC4908273 | ||
035 | _a(Au-PeEL)EBL4908273 | ||
035 | _a(CaPaEBR)ebr11409819 | ||
035 | _a(OCoLC)965547796 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA564.K547 2017 | |
082 | 0 | _a512.48199999999997 | |
100 | 1 | _aKleshchev, Alexander. | |
245 | 1 | 0 | _aImaginary Schur-Weyl Duality. |
250 | _a1st ed. | ||
264 | 1 |
_aProvidence : _bAmerican Mathematical Society, _c2017. |
|
264 | 4 | _c©2016. | |
300 | _a1 online resource (108 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aMemoirs of the American Mathematical Society ; _vv.245 |
|
505 | 0 | _aCover -- Title page -- Chapter 1. Introduction -- 1.1. Convex preorders and cuspidal systems -- 1.2. Imaginary representations -- 1.3. Imaginary Schur-Weyl duality -- 1.4. Imaginary Howe and Ringel dualities -- 1.5. Gelfand-Graev words and representations -- 1.6. Example: type ₁⁽¹⁾ -- 1.7. Structure of the paper -- 1.8. Acknowledgements -- Chapter 2. Preliminaries -- 2.1. Partitions and compositions -- 2.2. Coset representatives -- 2.3. Schur algebras -- 2.4. Representation theory of Schur algebras -- 2.5. Induction and restriction for Schur algebras -- 2.6. Schur functors -- Chapter 3. Khovanov-Lauda-Rouquier algebras -- 3.1. Lie theoretic notation -- 3.2. The definition and first properties -- 3.3. Basic representation theory of _{\al} -- 3.4. Induction, coinduction, and duality for KLR algebras -- 3.5. Crystal operators and extremal words -- 3.6. Mackey Theorem -- 3.7. Convex preorders and root partitions -- 3.8. Cuspidal systems and standard modules -- 3.9. Colored imaginary tensor spaces -- Chapter 4. Imaginary Schur-Weyl duality -- 4.1. Imaginary tensor space and its parabolic analogue -- 4.2. Action of \Si_{ } on _{ } -- 4.3. Imaginary Schur algebras -- 4.4. Characteristic zero theory -- 4.5. Imaginary induction and restriction -- Chapter 5. Imaginary Howe duality -- 5.1. Gelfand-Graev modules -- 5.2. Imaginary symmetric, divided, and exterior powers -- 5.3. Parabolic analogues -- 5.4. Schur algebras as endomorphism algebras -- 5.5. Projective generator for imaginary Schur algebra -- Chapter 6. Morita equaivalence -- 6.1. Morita equivalence functors -- 6.2. Induction and Morita equivalence -- 6.3. Alternative definitions of standard modules -- 6.4. Base change -- 6.5. Ringel duality and double centralizer properties -- Chapter 7. On formal characters of imaginary modules -- 7.1. Weight multiplicities in \La^{\la^{\tr}}( _{ℎ}). | |
505 | 8 | _a7.2. Gelfand-Graev words and shuffles -- 7.3. Gelfand-Graev fragment of the formal character of \Dede(\la) -- 7.4. Imaginary Jacobi-Trudy formula -- Chapter 8. Imaginary tensor space for non-simply-laced types -- 8.1. Minuscule representations for non-simply-laced types -- 8.2. The endomorphism ᵣ: _{ }→ _{ } for non-simply-laced types -- Bibliography -- Back Cover. | |
520 | _aThe authors study imaginary representations of the Khovanov-Lauda-Rouquier algebras of affine Lie type. Irreducible modules for such algebras arise as simple heads of standard modules. In order to define standard modules one needs to have a cuspidal system for a fixed convex preorder. A cuspidal system consists of irreducible cuspidal modules-one for each real positive root for the corresponding affine root system {\tt X}_l^{(1)}, as well as irreducible imaginary modules-one for each l-multiplication. The authors study imaginary modules by means of "imaginary Schur-Weyl duality" and introduce an imaginary analogue of tensor space and the imaginary Schur algebra. They construct a projective generator for the imaginary Schur algebra, which yields a Morita equivalence between the imaginary and the classical Schur algebra, and construct imaginary analogues of Gelfand-Graev representations, Ringel duality and the Jacobi-Trudy formula. | ||
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aDuality theory (Mathematics). | |
655 | 4 | _aElectronic books. | |
700 | 1 | _aMuth, Robert. | |
776 | 0 | 8 |
_iPrint version: _aKleshchev, Alexander _tImaginary Schur-Weyl Duality _dProvidence : American Mathematical Society,c2017 _z9781470422493 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aMemoirs of the American Mathematical Society | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4908273 _zClick to View |
999 |
_c128017 _d128017 |