000 04616nam a22004933i 4500
001 EBC4901863
003 MiAaPQ
005 20240729131324.0
006 m o d |
007 cr cnu||||||||
008 240724s2016 xx o ||||0 eng d
020 _a9781470429423
_q(electronic bk.)
020 _z9781470419264
035 _a(MiAaPQ)EBC4901863
035 _a(Au-PeEL)EBL4901863
035 _a(OCoLC)948030438
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA242 .M86 2016
082 0 _a512.7/4
100 1 _aMoriwaki, Atsushi.
245 1 0 _aAdelic Divisors on Arithmetic Varieties.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2016.
264 4 _c©2016.
300 _a1 online resource (134 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society Series ;
_vv.242
505 0 _aCover -- Title page -- Introduction -- 0.1. Birational Arakelov geometry -- 0.2. Green functions on analytic spaces over a compete discrete valuation field -- 0.3. Adelic arithmetic divisors -- 0.4. Main results -- 0.5. Conventions and terminology -- Chapter 1. Preliminaries -- 1.1. Lemmas -- 1.2. ℝ-Cartier divisors on a noetherian integral scheme -- 1.3. Analytification of algebraic schemes over a complete valuation field -- 1.4. Green functions on complex varieties -- Chapter 2. Adelic ℝ-Cartier Divisors over a Discrete Valuation Field -- 2.1. Green functions on analytic spaces over a discrete valuation field -- 2.2. Definition of adelic ℝ-Cartier divisors -- 2.3. Local degree -- 2.4. Local intersection number -- Chapter 3. Local and Global Density Theorems -- 3.1. Vertical fractional ideal sheaves and birational system of models -- 3.2. Model functions -- 3.3. Density theorems -- 3.4. Zariski's lemma for integrable functions -- 3.5. Radon measure arising from local intersection number -- Chapter 4. Adelic Arithmetic ℝ-Cartier Divisors -- 4.1. Definition and basic properties -- 4.2. Global degree -- 4.3. Volume of adelic arithmetic ℝ-Cartier divisors -- 4.4. Positivity of adelic arithmetic ℝ-Cartier divisors -- 4.5. Global intersection number -- Chapter 5. Continuity of the Volume Function -- 5.1. Basic properties of the volume -- 5.2. Proof of the continuity of the volume function -- 5.3. Applications -- Chapter 6. Zariski Decompositions of Adelic Arithmetic Divisors on Arithmetic Surfaces -- 6.1. Local Zariski decompositions of adelic divisors on algebraic curves -- 6.2. Proof of Zariski decompositions for adelic arithmetic divisors -- Chapter 7. Characterization of Nef Adelic Arithmetic Divisors on Arithmetic Surfaces -- 7.1. Hodge index theorem for adelic arithmetic divisors -- 7.2. Arithmetic asymptotic multiplicity.
505 8 _a7.3. Necessary condition for the equality ̂ =̂ ᵪ -- 7.4. Numerical characterization -- Chapter 8. Dirichlet's unit Theorem for Adelic Arithmetic Divisors -- 8.1. Fundamental question for adelic divisors -- 8.2. Proof of Theorem 8.1.2 -- Appendix A. Characterization of Relatively Nef Cartier Divisors -- A.1. Asymptotic multiplicity -- A.2. Sectional decomposition -- A.3. Characterization in terms of _{ } -- Bibliography -- Subject Index -- Symbol Index -- Back Cover.
520 _aIn this article, the author generalizes several fundamental results for arithmetic divisors, such as the continuity of the volume function, the generalized Hodge index theorem, Fujita's approximation theorem for arithmetic divisors, Zariski decompositions for arithmetic divisors on arithmetic surfaces and a special case of Dirichlet's unit theorem on arithmetic varieties, to the case of the adelic arithmetic divisors.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aDivisor theory.
650 0 _aTopological groups.
650 0 _aAlgebraic varieties.
650 0 _aApproximation theory.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aMoriwaki, Atsushi
_tAdelic Divisors on Arithmetic Varieties
_dProvidence : American Mathematical Society,c2016
_z9781470419264
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society Series
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4901863
_zClick to View
999 _c127899
_d127899