000 | 03915nam a22004813i 4500 | ||
---|---|---|---|
001 | EBC4901862 | ||
003 | MiAaPQ | ||
005 | 20240729131324.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2016 xx o ||||0 eng d | ||
020 |
_a9781470428792 _q(electronic bk.) |
||
020 | _z9781470418724 | ||
035 | _a(MiAaPQ)EBC4901862 | ||
035 | _a(Au-PeEL)EBL4901862 | ||
035 | _a(OCoLC)938502613 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA353.A9 H83 2015 | |
082 | 0 | _a515/.9 | |
100 | 1 | _aHuang, Wen. | |
245 | 1 | 0 | _aNil Bohr-Sets and Almost Automorphy of Higher Order. |
250 | _a1st ed. | ||
264 | 1 |
_aProvidence : _bAmerican Mathematical Society, _c2016. |
|
264 | 4 | _c©2015. | |
300 | _a1 online resource (98 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aMemoirs of the American Mathematical Society Series ; _vv.241 |
|
505 | 0 | _aCover -- Title page -- Chapter 1. Introduction -- 1.1. Higher order Bohr problem -- 1.2. Higher order almost automorphy -- 1.3. Further questions -- 1.4. Organization of the paper -- Chapter 2. Preliminaries -- 2.1. Basic notions -- 2.2. Bergelson-Host-Kra' Theorem and the proof of Theorem A(2) -- 2.3. Equivalence of Problems B-I,II,III -- Chapter 3. Nilsystems -- 3.1. Nilmanifolds and nilsystems -- 3.2. Nilpotent Matrix Lie Group -- Chapter 4. Generalized polynomials -- 4.1. Definitions -- 4.2. Basic properties of generalized polynomials -- Chapter 5. Nil Bohr₀-sets and generalized polynomials: Proof of Theorem B -- 5.1. Proof of Theorem B(1) -- 5.2. Proof of Theorem B(2) -- Chapter 6. Generalized polynomials and recurrence sets: Proof of Theorem C -- 6.1. A special case and preparation -- 6.2. Proof of Theorem C -- Chapter 7. Recurrence sets and regionally proximal relation of order -- 7.1. Regionally proximal relation of order -- 7.2. Nil_{ } Bohr₀-sets, Poincaré sets and \RP^{[ ]} -- 7.3. _{ }-sets and \RP^{[ ]} -- 7.4. Cubic version of multiple recurrence sets and \RP^{[ ]} -- 7.5. Conclusion -- Chapter 8. -step almost automorpy and recurrence sets -- 8.1. Definition of -step almost automorpy -- 8.2. Characterization of -step almost automorphy -- Appendix A. -- A.1. The Ramsey properties -- A.2. Compact Hausdorff systems -- A.3. Intersective -- Bibliography -- Index -- Back Cover. | |
520 | _aTwo closely related topics, higher order Bohr sets and higher order almost automorphy, are investigated in this paper. Both of them are related to nilsystems. In the first part, the problem which can be viewed as the higher order version of an old question concerning Bohr sets is studied: for any d\in \mathbb{N} does the collection of \{n\in \mathbb{Z}: S\cap (S-n)\cap\ldots\cap (S-dn)\neq \emptyset\} with S syndetic coincide with that of Nil_d Bohr_0-sets? In the second part, the notion of d-step almost automorphic systems with d\in\mathbb{N}\cup\{\infty\} is introduced and investigated, which is the generalization of the classical almost automorphic ones. | ||
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aAutomorphic functions. | |
650 | 0 | _aFourier analysis. | |
655 | 4 | _aElectronic books. | |
700 | 1 | _aShao, Song. | |
700 | 1 | _aYe, Xiangdong. | |
776 | 0 | 8 |
_iPrint version: _aHuang, Wen _tNil Bohr-Sets and Almost Automorphy of Higher Order _dProvidence : American Mathematical Society,c2016 _z9781470418724 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aMemoirs of the American Mathematical Society Series | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4901862 _zClick to View |
999 |
_c127898 _d127898 |