000 03915nam a22004813i 4500
001 EBC4901862
003 MiAaPQ
005 20240729131324.0
006 m o d |
007 cr cnu||||||||
008 240724s2016 xx o ||||0 eng d
020 _a9781470428792
_q(electronic bk.)
020 _z9781470418724
035 _a(MiAaPQ)EBC4901862
035 _a(Au-PeEL)EBL4901862
035 _a(OCoLC)938502613
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA353.A9 H83 2015
082 0 _a515/.9
100 1 _aHuang, Wen.
245 1 0 _aNil Bohr-Sets and Almost Automorphy of Higher Order.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2016.
264 4 _c©2015.
300 _a1 online resource (98 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society Series ;
_vv.241
505 0 _aCover -- Title page -- Chapter 1. Introduction -- 1.1. Higher order Bohr problem -- 1.2. Higher order almost automorphy -- 1.3. Further questions -- 1.4. Organization of the paper -- Chapter 2. Preliminaries -- 2.1. Basic notions -- 2.2. Bergelson-Host-Kra' Theorem and the proof of Theorem A(2) -- 2.3. Equivalence of Problems B-I,II,III -- Chapter 3. Nilsystems -- 3.1. Nilmanifolds and nilsystems -- 3.2. Nilpotent Matrix Lie Group -- Chapter 4. Generalized polynomials -- 4.1. Definitions -- 4.2. Basic properties of generalized polynomials -- Chapter 5. Nil Bohr₀-sets and generalized polynomials: Proof of Theorem B -- 5.1. Proof of Theorem B(1) -- 5.2. Proof of Theorem B(2) -- Chapter 6. Generalized polynomials and recurrence sets: Proof of Theorem C -- 6.1. A special case and preparation -- 6.2. Proof of Theorem C -- Chapter 7. Recurrence sets and regionally proximal relation of order -- 7.1. Regionally proximal relation of order -- 7.2. Nil_{ } Bohr₀-sets, Poincaré sets and \RP^{[ ]} -- 7.3. _{ }-sets and \RP^{[ ]} -- 7.4. Cubic version of multiple recurrence sets and \RP^{[ ]} -- 7.5. Conclusion -- Chapter 8. -step almost automorpy and recurrence sets -- 8.1. Definition of -step almost automorpy -- 8.2. Characterization of -step almost automorphy -- Appendix A. -- A.1. The Ramsey properties -- A.2. Compact Hausdorff systems -- A.3. Intersective -- Bibliography -- Index -- Back Cover.
520 _aTwo closely related topics, higher order Bohr sets and higher order almost automorphy, are investigated in this paper. Both of them are related to nilsystems. In the first part, the problem which can be viewed as the higher order version of an old question concerning Bohr sets is studied: for any d\in \mathbb{N} does the collection of \{n\in \mathbb{Z}: S\cap (S-n)\cap\ldots\cap (S-dn)\neq \emptyset\} with S syndetic coincide with that of Nil_d Bohr_0-sets? In the second part, the notion of d-step almost automorphic systems with d\in\mathbb{N}\cup\{\infty\} is introduced and investigated, which is the generalization of the classical almost automorphic ones.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aAutomorphic functions.
650 0 _aFourier analysis.
655 4 _aElectronic books.
700 1 _aShao, Song.
700 1 _aYe, Xiangdong.
776 0 8 _iPrint version:
_aHuang, Wen
_tNil Bohr-Sets and Almost Automorphy of Higher Order
_dProvidence : American Mathematical Society,c2016
_z9781470418724
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society Series
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4901862
_zClick to View
999 _c127898
_d127898