000 | 03842nam a22004813i 4500 | ||
---|---|---|---|
001 | EBC4901857 | ||
003 | MiAaPQ | ||
005 | 20240729131324.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2016 xx o ||||0 eng d | ||
020 |
_a9781470428280 _q(electronic bk.) |
||
020 | _z9781470417055 | ||
035 | _a(MiAaPQ)EBC4901857 | ||
035 | _a(Au-PeEL)EBL4901857 | ||
035 | _a(OCoLC)938459033 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQC174.17.H3 B33 2015 | |
082 | 0 | _a515/.39 | |
100 | 1 | _aBach, Volker. | |
245 | 1 | 0 | _aDiagonalizing Quadratic Bosonic Operators by Non-Autonomous Flow Equations. |
250 | _a1st ed. | ||
264 | 1 |
_aProvidence : _bAmerican Mathematical Society, _c2016. |
|
264 | 4 | _c©2015. | |
300 | _a1 online resource (134 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aMemoirs of the American Mathematical Society Series ; _vv.240 |
|
505 | 0 | _aCover -- Title page -- Chapter I. Introduction -- Chapter II. Diagonalization of Quadratic Boson Hamiltonians -- II.1. Quadratic Boson Operators -- II.2. Main Results -- II.3. Historical Overview -- Chapter III. Brocket-Wegner Flow for Quadratic Boson Operators -- III.1. Setup of the Brocket-Wegner Flow -- III.2. Mathematical Foundations of our Method -- III.3. Asymptotic Properties of the Brocket-Wegner Flow -- Chapter IV. Illustration of the Method -- IV.1. The Brocket-Wegner Flow on Bogoliubov's Example -- IV.2. Blow-up of the Brocket-Wegner Flow -- Chapter V. Technical Proofs on the One-Particle Hilbert Space -- V.1. Well-Posedness of the Flow -- V.2. Constants of Motion -- V.3. Asymptotics Properties of the Flow -- Chapter VI. Technical Proofs on the Boson Fock Space -- VI.1. Existence and Uniqueness of the Unitary Propagator -- VI.2. Brocket-Wegner Flow on Quadratic Boson Operators -- VI.3. Quasi -Diagonalization of Quadratic Boson Operators -- VI.4. -Diagonalization of Quadratic Boson Operators -- Chapter VII. Appendix -- VII.1. Non-Autonomous Evolution Equations on Banach Spaces -- VII.2. Autonomous Generators of Bogoliubov Transformations -- VII.3. Trace and Representation of Hilbert-Schmidt Operators -- References -- Back Cover. | |
520 | _aThe authors study a non-autonomous, non-linear evolution equation on the space of operators on a complex Hilbert space. They specify assumptions that ensure the global existence of its solutions and allow them to derive its asymptotics at temporal infinity. They demonstrate that these assumptions are optimal in a suitable sense and more general than those used before. The evolution equation derives from the Brocketâe"Wegner flow that was proposed to diagonalize matrices and operators by a strongly continuous unitary flow. In fact, the solution of the non-linear flow equation leads to a diagonalization of Hamiltonian operators in boson quantum field theory which are quadratic in the field. | ||
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aHamiltonian operator. | |
650 | 0 | _aMatrices. | |
650 | 0 | _aHilbert space. | |
655 | 4 | _aElectronic books. | |
700 | 1 | _aBru, Jean-Bernard. | |
776 | 0 | 8 |
_iPrint version: _aBach, Volker _tDiagonalizing Quadratic Bosonic Operators by Non-Autonomous Flow Equations _dProvidence : American Mathematical Society,c2016 _z9781470417055 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aMemoirs of the American Mathematical Society Series | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4901857 _zClick to View |
999 |
_c127893 _d127893 |