000 05833nam a22005053i 4500
001 EBC4901855
003 MiAaPQ
005 20240729131324.0
006 m o d |
007 cr cnu||||||||
008 240724s2016 xx o ||||0 eng d
020 _a9781470428242
_q(electronic bk.)
020 _z9781470416966
035 _a(MiAaPQ)EBC4901855
035 _a(Au-PeEL)EBL4901855
035 _a(OCoLC)938499830
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA573 .O47 2015
082 0 _a516.3/53
100 1 _aOâe(tm)Grady, Kieran G.
245 1 0 _aModuli of Double EPW-Sextics.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2016.
264 4 _c©2015.
300 _a1 online resource (188 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society Series ;
_vv.240
505 0 _aCover -- Title page -- Chapter 0. Introduction -- Chapter 1. Preliminaries -- 1.1. EPW-sextics and their double covers -- 1.2. Double EPW-sextics modulo isomorphisms -- 1.3. The GIT quotient -- 1.4. Moduli of plane sextics -- Chapter 2. One-parameter subgroups and stability -- 2.1. Outline of the section -- 2.2. (Semi)stability and flags -- 2.3. The Cone Decomposition Algorithm -- 2.4. The standard non-stable strata -- 2.4.1. The definitions -- 2.4.2. Geometric significance of certain strata -- 2.5. The stable locus -- 2.6. The GIT-boundary -- Chapter 3. Plane sextics and stability of lagrangians -- 3.1. The main result of the chapter -- 3.2. Plane sextics -- 3.3. Non-stable strata and plane sextics, I -- 3.4. Non-stable strata and plane sextics, II -- Chapter 4. Lagrangians with large stabilizers -- 4.1. Main results -- 4.2. A result of Luna -- 4.3. Lagrangians stabilized by a maximal torus -- 4.4. Lagrangians stabilized by \PGL(4) or \PSO(4) -- 4.5. Lagrangians stabilized by \PGL(3) -- Chapter 5. Description of the GIT-boundary -- 5.1. Main results -- 5.2. A GIT set-up for each standard non-stable stratum -- 5.2.1. Set-up -- 5.2.2. The Hilbert-Mumford numerical function -- 5.3. Summary of results of Chapters 6 and 7 -- 5.4. Proof of Theorem 5.1.1 assuming the results of Chapters 6 and 7 -- 5.4.1. Dimensions -- 5.4.2. No inclusion relations -- Chapter 6. Boundary components meeting ℑ in a subset of _{ }∪{ , ^{∨}} -- 6.1. \gB_{\cC₁} -- 6.1.1. First results -- 6.1.2. Properly semistable points of ^{\sF}_{\cC₁} -- 6.1.3. Semistable lagrangians with dimΘ_{ }≥2 or _{ , }=\PP( ). -- 6.1.4. Analysis of Θ_{ } and _{ , } -- 6.1.5. Wrapping it up -- 6.2. \gB_{\cA} -- 6.2.1. The GIT analysis -- 6.2.2. Analysis of Θ_{ } and _{ , } -- 6.2.3. Wrapping it up -- 6.3. \gB_{\cD} -- 6.3.1. Quadrics associated to ∈ ^{\sF}_{\cD} -- 6.3.2. The GIT analysis.
505 8 _a6.3.3. Analysis of Θ_{ } and _{ , } -- 6.3.4. Wrapping it up -- 6.4. \gB_{\cE₁} -- 6.4.1. The GIT analysis -- 6.4.2. Analysis of Θ_{ } and _{ , } -- 6.4.3. Wrapping it up -- 6.5. \gB_{\cE^{∨}₁} -- 6.5.1. The GIT analysis -- 6.5.2. Analysis of Θ_{ } and _{ , } -- 6.5.3. Wrapping it up -- 6.6. \gB_{\cF₁} -- 6.6.1. The GIT analysis -- 6.6.2. Analysis of Θ_{ } and _{ , } -- 6.6.3. Wrapping it up -- Chapter 7. The remaining boundary components -- 7.1. \gB_{\cF₂} -- 7.2. \gB_{\cF₂}∩\gI -- 7.2.1. Set-up and statement of the main results -- 7.2.2. The 3-fold swept out by the projective planes parametrized by ₊( ) -- 7.2.3. Explicit description of \WW^{ }_{ }. -- 7.2.4. \gX_{\cV} is irreducible of dimension 3 -- 7.2.5. Points of \gB_{\cF₂}∩\gI are represented by lagrangians in \WW^{ }_{ } -- 7.2.6. _{ , } for ∈\XX^{ }_{\cV} and spanned by ∈ ₀₁, ∈ ₂₃ and ∈ ₄₅ -- 7.2.7. Proof that \gB_{\cF₂}∩\gI=\gX_{\cV} -- 7.3. \gX_{\cN₃} -- 7.4. \gX_{\cN₃}∩\gI -- 7.4.1. Set-up and statement of the main results -- 7.4.2. Duality -- 7.4.3. Properties of \gX_{\cZ} -- 7.4.4. Points of \gX_{\cN₃}∩\gI are represented by lagrangians in \YY^{ }_{ } -- 7.4.5. Proof that \gX_{\cN₃}∩\gI=\gX_{\cW}∪\gX_{\cZ} -- Appendix A. Elementary auxiliary results -- A.1. Discriminant of quadratic forms -- A.2. Quadratic forms of corank 2 -- A.3. Pencils of degenerate linear maps -- Appendix B. Tables -- Bibliography -- Back Cover.
520 _aThe author studies the GIT quotient of the symplectic grassmannian parametrizing lagrangian subspaces of \bigwedge^3{\mathbb C}^6 modulo the natural action of \mathrm{SL}_6, call it \mathfrak{M}. This is a compactification of the moduli space of smooth double EPW-sextics and hence birational to the moduli space of HK 4-folds of Type K3^{[2]} polarized by a divisor of square 2 for the Beauville-Bogomolov quadratic form. The author will determine the stable points. His work bears a strong analogy with the work of Voisin, Laza and Looijenga on moduli and periods of cubic 4-folds.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aSurfaces, Sextic.
650 0 _aEquations, Sextic.
650 0 _aPermutation groups.
650 0 _aHypersurfaces.
650 0 _aGeometry, Algebraic.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aOâe(tm)Grady, Kieran G.
_tModuli of Double EPW-Sextics
_dProvidence : American Mathematical Society,c2016
_z9781470416966
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society Series
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4901855
_zClick to View
999 _c127891
_d127891