000 | 05833nam a22005053i 4500 | ||
---|---|---|---|
001 | EBC4901855 | ||
003 | MiAaPQ | ||
005 | 20240729131324.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2016 xx o ||||0 eng d | ||
020 |
_a9781470428242 _q(electronic bk.) |
||
020 | _z9781470416966 | ||
035 | _a(MiAaPQ)EBC4901855 | ||
035 | _a(Au-PeEL)EBL4901855 | ||
035 | _a(OCoLC)938499830 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA573 .O47 2015 | |
082 | 0 | _a516.3/53 | |
100 | 1 | _aOâe(tm)Grady, Kieran G. | |
245 | 1 | 0 | _aModuli of Double EPW-Sextics. |
250 | _a1st ed. | ||
264 | 1 |
_aProvidence : _bAmerican Mathematical Society, _c2016. |
|
264 | 4 | _c©2015. | |
300 | _a1 online resource (188 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aMemoirs of the American Mathematical Society Series ; _vv.240 |
|
505 | 0 | _aCover -- Title page -- Chapter 0. Introduction -- Chapter 1. Preliminaries -- 1.1. EPW-sextics and their double covers -- 1.2. Double EPW-sextics modulo isomorphisms -- 1.3. The GIT quotient -- 1.4. Moduli of plane sextics -- Chapter 2. One-parameter subgroups and stability -- 2.1. Outline of the section -- 2.2. (Semi)stability and flags -- 2.3. The Cone Decomposition Algorithm -- 2.4. The standard non-stable strata -- 2.4.1. The definitions -- 2.4.2. Geometric significance of certain strata -- 2.5. The stable locus -- 2.6. The GIT-boundary -- Chapter 3. Plane sextics and stability of lagrangians -- 3.1. The main result of the chapter -- 3.2. Plane sextics -- 3.3. Non-stable strata and plane sextics, I -- 3.4. Non-stable strata and plane sextics, II -- Chapter 4. Lagrangians with large stabilizers -- 4.1. Main results -- 4.2. A result of Luna -- 4.3. Lagrangians stabilized by a maximal torus -- 4.4. Lagrangians stabilized by \PGL(4) or \PSO(4) -- 4.5. Lagrangians stabilized by \PGL(3) -- Chapter 5. Description of the GIT-boundary -- 5.1. Main results -- 5.2. A GIT set-up for each standard non-stable stratum -- 5.2.1. Set-up -- 5.2.2. The Hilbert-Mumford numerical function -- 5.3. Summary of results of Chapters 6 and 7 -- 5.4. Proof of Theorem 5.1.1 assuming the results of Chapters 6 and 7 -- 5.4.1. Dimensions -- 5.4.2. No inclusion relations -- Chapter 6. Boundary components meeting ℑ in a subset of _{ }∪{ , ^{∨}} -- 6.1. \gB_{\cC₁} -- 6.1.1. First results -- 6.1.2. Properly semistable points of ^{\sF}_{\cC₁} -- 6.1.3. Semistable lagrangians with dimΘ_{ }≥2 or _{ , }=\PP( ). -- 6.1.4. Analysis of Θ_{ } and _{ , } -- 6.1.5. Wrapping it up -- 6.2. \gB_{\cA} -- 6.2.1. The GIT analysis -- 6.2.2. Analysis of Θ_{ } and _{ , } -- 6.2.3. Wrapping it up -- 6.3. \gB_{\cD} -- 6.3.1. Quadrics associated to ∈ ^{\sF}_{\cD} -- 6.3.2. The GIT analysis. | |
505 | 8 | _a6.3.3. Analysis of Θ_{ } and _{ , } -- 6.3.4. Wrapping it up -- 6.4. \gB_{\cE₁} -- 6.4.1. The GIT analysis -- 6.4.2. Analysis of Θ_{ } and _{ , } -- 6.4.3. Wrapping it up -- 6.5. \gB_{\cE^{∨}₁} -- 6.5.1. The GIT analysis -- 6.5.2. Analysis of Θ_{ } and _{ , } -- 6.5.3. Wrapping it up -- 6.6. \gB_{\cF₁} -- 6.6.1. The GIT analysis -- 6.6.2. Analysis of Θ_{ } and _{ , } -- 6.6.3. Wrapping it up -- Chapter 7. The remaining boundary components -- 7.1. \gB_{\cF₂} -- 7.2. \gB_{\cF₂}∩\gI -- 7.2.1. Set-up and statement of the main results -- 7.2.2. The 3-fold swept out by the projective planes parametrized by ₊( ) -- 7.2.3. Explicit description of \WW^{ }_{ }. -- 7.2.4. \gX_{\cV} is irreducible of dimension 3 -- 7.2.5. Points of \gB_{\cF₂}∩\gI are represented by lagrangians in \WW^{ }_{ } -- 7.2.6. _{ , } for ∈\XX^{ }_{\cV} and spanned by ∈ ₀₁, ∈ ₂₃ and ∈ ₄₅ -- 7.2.7. Proof that \gB_{\cF₂}∩\gI=\gX_{\cV} -- 7.3. \gX_{\cN₃} -- 7.4. \gX_{\cN₃}∩\gI -- 7.4.1. Set-up and statement of the main results -- 7.4.2. Duality -- 7.4.3. Properties of \gX_{\cZ} -- 7.4.4. Points of \gX_{\cN₃}∩\gI are represented by lagrangians in \YY^{ }_{ } -- 7.4.5. Proof that \gX_{\cN₃}∩\gI=\gX_{\cW}∪\gX_{\cZ} -- Appendix A. Elementary auxiliary results -- A.1. Discriminant of quadratic forms -- A.2. Quadratic forms of corank 2 -- A.3. Pencils of degenerate linear maps -- Appendix B. Tables -- Bibliography -- Back Cover. | |
520 | _aThe author studies the GIT quotient of the symplectic grassmannian parametrizing lagrangian subspaces of \bigwedge^3{\mathbb C}^6 modulo the natural action of \mathrm{SL}_6, call it \mathfrak{M}. This is a compactification of the moduli space of smooth double EPW-sextics and hence birational to the moduli space of HK 4-folds of Type K3^{[2]} polarized by a divisor of square 2 for the Beauville-Bogomolov quadratic form. The author will determine the stable points. His work bears a strong analogy with the work of Voisin, Laza and Looijenga on moduli and periods of cubic 4-folds. | ||
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aSurfaces, Sextic. | |
650 | 0 | _aEquations, Sextic. | |
650 | 0 | _aPermutation groups. | |
650 | 0 | _aHypersurfaces. | |
650 | 0 | _aGeometry, Algebraic. | |
655 | 4 | _aElectronic books. | |
776 | 0 | 8 |
_iPrint version: _aOâe(tm)Grady, Kieran G. _tModuli of Double EPW-Sextics _dProvidence : American Mathematical Society,c2016 _z9781470416966 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aMemoirs of the American Mathematical Society Series | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4901855 _zClick to View |
999 |
_c127891 _d127891 |