000 | 05741nam a22004813i 4500 | ||
---|---|---|---|
001 | EBC4901787 | ||
003 | MiAaPQ | ||
005 | 20240729131323.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2016 xx o ||||0 eng d | ||
020 |
_a9781470430030 _q(electronic bk.) |
||
020 | _z9781470419479 | ||
035 | _a(MiAaPQ)EBC4901787 | ||
035 | _a(Au-PeEL)EBL4901787 | ||
035 | _a(CaPaEBR)ebr11406648 | ||
035 | _a(OCoLC)993773248 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA251.5.F76 2016 | |
082 | 0 | _a512.7/4 | |
100 | 1 | _aKohel, David. | |
245 | 1 | 0 |
_aFrobenius Distributions : _bLang-Trotter and Sato-Tate Conjectures. |
250 | _a1st ed. | ||
264 | 1 |
_aProvidence : _bAmerican Mathematical Society, _c2016. |
|
264 | 4 | _c©2016. | |
300 | _a1 online resource (250 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aContemporary Mathematics ; _vv.663 |
|
505 | 0 | _aCover -- Title page -- Contents -- Preface -- Lettre à Armand Borel -- Notes -- Points de repère chronologiques -- \frenchrefname -- Motivic Serre group, algebraic Sato-Tate group and Sato-Tate conjecture -- 1. Introduction -- 2. Hodge structures and Mumford-Tate group -- 3. Twisted Lefschetz groups -- 4. Hodge structures associated with -adic representations -- 5. Algebraic Sato-Tate conjecture -- 6. Connected components of \AST_{ } and \ST_{ } -- 7. Mumford-Tate group and Mumford-Tate conjecture -- 8. Some conditions for the algebraic Sato-Tate conjecture -- 9. Motivic Galois group and motivic Serre group -- 10. Motivic Mumford-Tate and Motivic Serre groups -- 11. The algebraic Sato-Tate group -- References -- An application of the effective Sato-Tate conjecture -- 1. Motivic -functions and motivic Galois groups -- 2. Equidistribution and motivic -functions -- 3. The case of an elliptic curve -- 4. The case of two elliptic curves -- 5. Notes on the general case -- Acknowledgements -- References -- Sato-Tate groups of some weight 3 motives -- 1. Introduction -- 2. Group-theoretic classification -- 3. Testing the generalized Sato-Tate conjecture -- 4. Modular forms and Hecke characters -- 5. Direct sum constructions -- 6. Tensor product constructions -- 7. The Dwork pencil -- 8. More modular constructions -- 9. Moment statistics -- Acknowledgments -- References -- Sato-Tate groups of ²= ⁸+ and ²= ⁷- . -- 1. Introduction -- 2. Background -- 3. Trace formulas -- 4. Guessing Sato-Tate groups -- 5. Determining Sato-Tate groups -- 6. Galois endomorphism types -- References -- Computing Hasse-Witt matrices of hyperelliptic curves in average polynomial time, II -- 1. Introduction -- 2. Recurrence relations -- 3. Accumulating remainder trees -- 4. Computing the first row -- 5. Hasse-Witt matrices of translated curves. | |
505 | 8 | _a6. Computing the whole matrix -- 7. Performance results -- 8. Computing Sato-Tate distributions -- References -- Quickly constructing curves of genus 4 with many points -- 1. Introduction -- 2. A family of genus-4 curves covering a genus-2 curve -- 3. Change in defect -- 4. Interlude on work by Hayashida -- 5. Genus-2 curves with small defect -- 6. Genus-4 curves with small defect -- 7. Results -- References -- Variants of the Sato-Tate and Lang-Trotter Conjectures -- 1. Introduction -- 2. Variations of the Sato-Tate conjecture -- 3. The Lang-Trotter Conjecture on Average -- 4. Champion Primes -- References -- On the distribution of the trace in the unitary symplectic group and the distribution of Frobenius -- 1. Introduction -- 2. The unitary symplectic group -- 3. Weyl's integration formula -- 4. Equidistribution -- 5. Expressions of the law of the trace in genus 2 -- 6. The Viète map and its image -- 7. The symmetric alcove -- 8. Symmetric integration formula -- Appendix A. The character ring of -- References -- Lower-Order Biases in Elliptic Curve Fourier Coefficients in Families -- 1. Introduction -- 2. Tools for Calculating Biases -- 3. Proven Special Cases -- 4. Numerical Investigations -- 5. Conclusion and Future Work -- References -- Back Cover. | |
520 | _aThis volume contains the proceedings of the Winter School and Workshop on Frobenius Distributions on Curves, held from February 17-21, 2014 and February 24-28, 2014, at the Centre International de Rencontres Mathématiques, Marseille, France. This volume gives a representative sample of current research and developments in the rapidly developing areas of Frobenius distributions. This is mostly driven by two famous conjectures: the Sato-Tate conjecture, which has been recently proved for elliptic curves by L. Clozel, M. Harris and R. Taylor, and the Lang-Trotter conjecture, which is still widely open. Investigations in this area are based on a fine mix of algebraic, analytic and computational techniques, and the papers contained in this volume give a balanced picture of these approaches. | ||
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aFrobenius algebras--Congresses. | |
655 | 4 | _aElectronic books. | |
700 | 1 | _aShparlinski, Igor. | |
776 | 0 | 8 |
_iPrint version: _aKohel, David _tFrobenius Distributions: Lang-Trotter and Sato-Tate Conjectures _dProvidence : American Mathematical Society,c2016 _z9781470419479 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aContemporary Mathematics | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4901787 _zClick to View |
999 |
_c127865 _d127865 |