000 | 03126nam a22004693i 4500 | ||
---|---|---|---|
001 | EBC4832037 | ||
003 | MiAaPQ | ||
005 | 20240729131156.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2015 xx o ||||0 eng d | ||
020 |
_a9781470426170 _q(electronic bk.) |
||
020 | _z9781470414658 | ||
035 | _a(MiAaPQ)EBC4832037 | ||
035 | _a(Au-PeEL)EBL4832037 | ||
035 | _a(CaPaEBR)ebr11367322 | ||
035 | _a(OCoLC)920024463 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA273.J367 2015 | |
082 | 0 | _a515/.732 | |
100 | 1 | _aJanson, Svante. | |
245 | 1 | 0 | _aHigher Moments of Banach Space Valued Random Variables. |
250 | _a1st ed. | ||
264 | 1 |
_aProvidence : _bAmerican Mathematical Society, _c2015. |
|
264 | 4 | _c©2015. | |
300 | _a1 online resource (124 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aMemoirs of the American Mathematical Society ; _vv.238 |
|
505 | 0 | _aCover -- Title page -- Chapter 1. Introduction -- Chapter 2. Preliminaries -- 2.1. Notations -- 2.2. Measurability -- 2.3. Tensor products of Banach spaces -- 2.4. Vector-valued integration -- Chapter 3. Moments of Banach space valued random variables -- 3.1. Moments -- 3.2. Examples -- Chapter 4. The approximation property -- Chapter 5. Hilbert spaces -- Chapter 6. ^{ }( ) -- Chapter 7. ( ) -- Chapter 8. ₀( ) -- Chapter 9. [0,1] -- 9.1. [0,1] as a Banach space -- 9.2. [0,1] as a Banach algebra -- 9.3. Measurability and random variables in \doi -- 9.4. Moments of [0,1]-valued random variables -- Chapter 10. Uniqueness and Convergence -- 10.1. Uniqueness -- 10.2. Convergence -- Appendix A. The Reproducing Hilbert Space -- Appendix B. The Zolotarev Distances -- B.1. Fréchet differentiablity -- B.2. Zolotarev distances -- Bibliography -- Back Cover. | |
520 | _aThe authors define the k:th moment of a Banach space valued random variable as the expectation of its k:th tensor power; thus the moment (if it exists) is an element of a tensor power of the original Banach space. The authors study both the projective and injective tensor products, and their relation. Moreover, in order to be general and flexible, we study three different types of expectations: Bochner integrals, Pettis integrals and Dunford integrals. | ||
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aRandom variables. | |
655 | 4 | _aElectronic books. | |
700 | 1 | _aKaijser, Sten. | |
776 | 0 | 8 |
_iPrint version: _aJanson, Svante _tHigher Moments of Banach Space Valued Random Variables _dProvidence : American Mathematical Society,c2015 _z9781470414658 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aMemoirs of the American Mathematical Society | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4832037 _zClick to View |
999 |
_c124857 _d124857 |