000 06074nam a22004813i 4500
001 EBC4832028
003 MiAaPQ
005 20240729131156.0
006 m o d |
007 cr cnu||||||||
008 240724s2015 xx o ||||0 eng d
020 _a9781470425098
_q(electronic bk.)
020 _z9781470410940
035 _a(MiAaPQ)EBC4832028
035 _a(Au-PeEL)EBL4832028
035 _a(CaPaEBR)ebr11367313
035 _a(OCoLC)917876223
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA243.C446 2016
082 0 _a512.7/4
100 1 _aChenevier, Gaëtan.
245 1 0 _aLevel One Algebraic Cusp Forms of Classical Groups of Small Rank.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2015.
264 4 _c©2015.
300 _a1 online resource (134 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.237
505 0 _aCover -- Title page -- Chapter 1. Introduction -- 1.1. A counting problem -- 1.2. Motivations -- 1.3. The main result -- 1.4. Langlands-Sato-Tate groups -- 1.5. The symplectic-orthogonal alternative -- 1.6. Case-by-case description, examples in low motivic weight -- 1.7. Generalizations -- 1.8. Methods and proofs -- 1.9. Application to Borcherds even lattices of rank 25 and determinant 2 -- 1.10. A level 1, non-cuspidal, tempered automorphic representation of \GL₂₈ over \Q with weights 0,1,2,\cdots,27 -- Chapter 2. Polynomial invariants of finite subgroups of compact connected Lie groups -- 2.1. The setting -- 2.2. The degenerate Weyl character formula -- 2.3. A computer program -- 2.4. Some numerical applications -- 2.5. Reliability -- 2.6. A check: the harmonic polynomial invariants of a Weyl group -- Chapter 3. Automorphic representations of classical groups : review of Arthur's results -- 3.1. Classical semisimple groups over \Z -- 3.2. Discrete automorphic representations -- 3.3. The case of Chevalley and definite semisimple \Z-groups -- 3.4. Langlands parameterization of Π_{ }( ) -- 3.5. Arthur's symplectic-orthogonal alternative -- 3.6. The symplectic-orthogonal alternative for polarized algebraic regular cuspidal automorphic representations of \GL_{ } over \Q -- 3.7. Arthur's classification: global parameters -- 3.8. The packet Π( ) of a ∈Ψ_{ }( ) -- 3.9. The character _{ } of _{ } -- 3.10. Arthur's multiplicity formula -- Chapter 4. Determination of Π_{ }^{⊥}(\PGL_{ }) for ≤5 -- 4.1. Determination of Π^{⊥}_{ }(\PGL₂) -- 4.2. Determination of Π_{ }^{ }(\PGL₄) -- 4.3. An elementary lifting result for isogenies -- 4.4. Symmetric square functoriality and Π^{⊥}_{ }(\PGL₃) -- 4.5. Tensor product functoriality and Π_{ }^{ }(\PGL₄) -- 4.6. Λ* functorality and Π_{ }^{ }(\PGL₅).
505 8 _aChapter 5. Description of Π_{ }( ₇) and Π_{ }^{ }(\PGL₆) -- 5.1. The semisimple \Z-group ₇ -- 5.2. Parameterization by the infinitesimal character -- 5.3. Endoscopic partition of Π_{ }( ₇) -- 5.4. Conclusions -- Chapter 6. Description of Π_{ }( ₉) and Π_{ }^{ }(\PGL₈) -- 6.1. The semisimple \Z-group ₉ -- 6.2. Endoscopic partition of Π_{ } -- 6.3. Conclusions -- Chapter 7. Description of Π_{ }( ₈) and Π_{ }^{ }(\PGL₈) -- 7.1. The semisimple \Z-group ₈ -- 7.2. Endoscopic partition of Π_{ } -- 7.3. Conclusions -- Chapter 8. Description of Π_{ }( ₂) -- 8.1. The semisimple definite ₂ over \Z -- 8.2. Polynomial invariants for ₂(\Z)⊂ ₂(\R) -- 8.3. Endoscopic classification of Π_{ }( ₂) -- 8.4. Conclusions -- Chapter 9. Application to Siegel modular forms -- 9.1. Vector valued Siegel modular forms of level 1 -- 9.2. Two lemmas on holomorphic discrete series -- 9.3. An example: the case of genus 3 -- Appendix A. Adams-Johnson packets -- A.1. Strong inner forms of compact connected real Lie groups -- A.2. Adams-Johnson parameters -- A.3. Adams-Johnson packets -- A.4. Shelstad's parameterization map -- Appendix B. The Langlands group of \Z and Sato-Tate groups -- B.1. The locally compact group ℒ_{\Z} -- B.2. Sato-Tate groups -- B.3. A list in rank ≤8 -- Appendix C. Tables -- Appendix D. The 121 level 1 automorphic representations of ₂₅ with trivial coefficients -- Bibliography -- Back Cover.
520 _aThe authors determine the number of level 1, polarized, algebraic regular, cuspidal automorphic representations of \mathrm{GL}_n over \mathbb Q of any given infinitesimal character, for essentially all n \leq 8. For this, they compute the dimensions of spaces of level 1 automorphic forms for certain semisimple \mathbb Z-forms of the compact groups \mathrm{SO}_7, \mathrm{SO}_8, \mathrm{SO}_9 (and {\mathrm G}_2) and determine Arthur's endoscopic partition of these spaces in all cases. They also give applications to the 121 even lattices of rank 25 and determinant 2 found by Borcherds, to level one self-dual automorphic representations of \mathrm{GL}_n with trivial infinitesimal character, and to vector valued Siegel modular forms of genus 3. A part of the authors' results are conditional to certain expected results in the theory of twisted endoscopy.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aForms (Mathematics).
655 4 _aElectronic books.
700 1 _aRenard, David A.
776 0 8 _iPrint version:
_aChenevier, Gaëtan
_tLevel One Algebraic Cusp Forms of Classical Groups of Small Rank
_dProvidence : American Mathematical Society,c2015
_z9781470410940
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4832028
_zClick to View
999 _c124849
_d124849