000 04121nam a22004933i 4500
001 EBC4832024
003 MiAaPQ
005 20240729131156.0
006 m o d |
007 cr cnu||||||||
008 240724s2015 xx o ||||0 eng d
020 _a9781470425012
_q(electronic bk.)
020 _z9781470414191
035 _a(MiAaPQ)EBC4832024
035 _a(Au-PeEL)EBL4832024
035 _a(CaPaEBR)ebr11367309
035 _a(OCoLC)917874773
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA196.B736 2015
082 0 _a512.70000000000005
100 1 _aChuang, Chih-Yun.
245 1 0 _aBrandt Matrices and Theta Series over Global Function Fields.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2015.
264 4 _c©2015.
300 _a1 online resource (76 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.237
505 0 _aCover -- Title page -- Chapter 1. Introduction -- Chapter 2. Brandt matrices and definite Shimura curves -- 1. Basic setting -- 2. Definite quaternion algebra over function fields -- 3. Brandt matrices -- 4. Definite Shimura curves -- 4.1. Hecke correspondences -- 4.2. Gross height pairing -- Chapter 3. The basis problem for Drinfeld type automorphic forms -- 1. Weil representation -- 1.1. Weil representation of \SL₂× ( ) -- 1.2. Test functions from arithmetic data -- 2. Theta series -- 3. Drinfeld type automorphic forms and Hecke operators -- 3.1. Fourier coefficients of theta series -- 4. The Hecke module homomorphism Φ -- 4.1. Changing levels -- 5. Construction of Drinfeld type newforms -- 6. The basis problem -- Chapter 4. Metaplectic forms and Shintani-type correspondence -- 1. Metaplectic forms -- 1.1. Metaplectic group -- 1.2. Weil representation and theta series from pure quaternions -- 1.3. Fourier coefficients of metaplectic theta series -- 2. Hecke operators and Shintani-type correspondence -- 3. Pure quaternions and Brandt matrices -- Chapter 5. Trace formula of Brandt matrices -- 1. Optimal embeddings -- 1.1. Local optimal embeddings -- 2. Trace formula -- Bibliography -- Symbols -- Back Cover.
520 _aThe aim of this article is to give a complete account of the Eichler-Brandt theory over function fields and the basis problem for Drinfeld type automorphic forms. Given arbitrary function field k together with a fixed place \infty, the authors construct a family of theta series from the norm forms of "definite" quaternion algebras, and establish an explicit Hecke-module homomorphism from the Picard group of an associated definite Shimura curve to a space of Drinfeld type automorphic forms. The "compatibility" of these homomorphisms with different square-free levels is also examined. These Hecke-equivariant maps lead to a nice description of the subspace generated by the authors' theta series, and thereby contributes to the so-called basis problem. Restricting the norm forms to pure quaternions, the authors obtain another family of theta series which are automorphic functions on the metaplectic group, and this results in a Shintani-type correspondence between Drinfeld type forms and metaplectic forms.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aMatrices.
655 4 _aElectronic books.
700 1 _aLee, Ting-Fang.
700 1 _aWei, Fu-Tsun.
700 1 _aYu, Jing.
776 0 8 _iPrint version:
_aChuang, Chih-Yun
_tBrandt Matrices and Theta Series over Global Function Fields
_dProvidence : American Mathematical Society,c2015
_z9781470414191
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4832024
_zClick to View
999 _c124845
_d124845