000 09710nam a22005053i 4500
001 EBC4759865
003 MiAaPQ
005 20240729130956.0
006 m o d |
007 cr cnu||||||||
008 240724s2016 xx o ||||0 eng d
020 _a9783662466575
_q(electronic bk.)
020 _z9783662466568
035 _a(MiAaPQ)EBC4759865
035 _a(Au-PeEL)EBL4759865
035 _a(CaPaEBR)ebr11315241
035 _a(CaONFJC)MIL978551
035 _a(OCoLC)965444105
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aTJ165
100 1 _aBreitkopf, Cornelia.
245 1 0 _aSpringer Handbook of Electrochemical Energy.
250 _a1st ed.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin / Heidelberg,
_c2016.
264 4 _c©2017.
300 _a1 online resource (1019 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aSpringer Handbooks Series
505 0 _aIntro -- Preface -- About the Editors -- List of Authors -- Contents -- List of Abbreviations -- 1 Electrochemical Science - Historial Review -- References -- 2 Modern Electrochemistry -- 2.1 Fundamental Components of Electrochemistry -- 2.2 Thermodynamics -- 2.3 Kinetics -- 2.4 Mass Transport -- 2.5 The Charged Electrode Interface/Electrochemical Double Layer -- 2.6 Ionic and Electronic Resistance -- 2.7 Experimentation -- 2.8 Subtopics in Electrochemistry -- 2.9 Summary -- References -- Part A Thermodynamics -- 3 Thermodynamical Aspects of Electrochemical Reactions -- 3.1 Electrochemical Reactions for Energy Conversion -- 3.2 Electrochemical Reactions and Energy Transformation -- References -- 4 Thermodynamicsof Electrochemical Systems -- 4.1 Scope and Premises -- 4.2 Thermodynamic Properties of the Total Cell -- 4.3 Example Cells -- 4.4 Entropy Production in Three- and Two-Dimensions -- 4.5 Alternative Variable Sets -- 4.6 Cell Potentials -- 4.7 The Polymer Electrolyte Fuel Cell -- 4.8 Transport at Interfaces. Perspectives and Conclusion -- References -- 5 Multiscale Modeling of Solvation -- 5.1 Integral Equation Theory of Molecular Liquids -- 5.2 Statistical-Mechanical, Molecular Theory of Solvation -- 5.3 Multiscale Coupling of the 3D-RISM-KH Molecular Theory -- 5.4 Multi-Time-Step Molecular Dynamics of Biomolecules -- 5.5 Electrical Double Layer in Nanoporous Materials -- 5.6 Replica Formalism for Fluid Sorbedin a Disordered Matrix -- 5.7 Replica DRISM-KH-VM for Electrolyte Solution Sorbed in Nanoporous Material -- 5.8 Conclusions -- References -- Part B Electrodes and Electrode Processes -- 6 Highly Ordered Macroporous Electrodes -- 6.1 Macroporous Electrodes by Infiltrationof Colloidal Templates -- 6.2 Macroporous Materials with a Gradient in Pore Diameter -- 6.3 Macroporous Microelectrodeswith Cylindrical Geometry.
505 8 _a6.4 Applicationsof Macroporous Electrodes -- 6.5 Conclusion -- References -- 7 Ion-Sensitive Electrodes -- 7.1 Fundamentals of Potentiometry -- 7.2 Application of ISE -- 7.3 Amperometric and Voltammetric Methods -- References -- 8 Transport in Liquid-Phase Electrochemical Devices -- 8.1 A General Transport Model for Liquid-Fed Electrochemical Cells -- 8.2 Practical Considerations -- 8.3 Example Cell: Direct Borohydride-Hydrogen Peroxide Fuel Cell -- 8.4 Conclusions -- 8.5 Nomenclature -- References -- 9 Catalyst Layer Modeling -- 9.1 Gas Diffusion Electrodes -- 9.2 Catalyst Layer Physical Structure -- 9.3 Governing Equations -- 9.4 Macroscale Models -- 9.5 Conclusions and Outlook -- References -- 10 Water Management in Proton Exchange Fuell Cells -- 10.1 Water Management in PEMFC -- 10.2 Thermodynamics and Electrochemistry -- 10.3 Polarization Curve -- 10.4 Gas Humidification -- 10.5 Sensorless Humidification -- References -- 11 Calculations in Li-Ion Battery Materials -- 11.1 Using DFT to Calculate the Voltage of Layered Materials -- 11.2 PDOS Calculations of Oxygen Stability and Cycling Safety -- 11.3 Summary -- References -- Part C Electrochemistry Probes -- 12 Electrochemical Energy Generationand Storageas Seen by In-Situ NMR -- 12.1 Spatially-Resolved 195Pt NMR Spectroscopyof Pt-Based Electrocatalysts -- 12.2 NMR/MRI Studies of Energy Storage (Batteries) Materials -- 12.3 MRI of Water Distribution in Fuel Cells -- 12.4 Conclusion and Future Perspectives:Sensitivity, Sensitivity and Sensitivity -- References -- 13 Spectroscopy of Electrochemical Systems -- 13.1 General Experimental Considerations -- 13.2 Electronic Spectroscopy -- 13.3 Spectroelectrochemistry of the Excited State -- 13.4 Vibrational Spectroelectrochemistry -- 13.5 Raman Spectroelectrochemistry -- 13.6 Sum Frequency Generation Spectroelectrochemistry.
505 8 _a13.7 Conclusions and Outlook -- References -- 14 Kinetic Activity in Electrochemical Cells -- 14.1 Evaluation of Pt/VC Electrocatalysts for the ORR -- 14.2 Electrochemical Characterization of the Pt/VC ElectrocatalystThin-Film Electrodes by RDE and RRDE -- 14.3 Electrochemical Characterization of Mn_xO_y Thin-Film Electrodes -- 14.4 Conclusions -- References -- Part D Energy Conversion and Storage -- 15 Lithium-Ion Batteries and Materials -- 15.1 Overview - Electrochemical Evaluation of Li-Ion Batteries -- 15.2 Evaluation of Materials and Components in Li-Ion Batteries -- 15.3 Evaluation at the Cell-Battery Level -- 15.4 Beyond Li-Ion -- 15.5 Conclusions -- References -- 16 Materials for Electrochemical Capacitors -- 16.1 Batteries and Electrochemical Capacitors - Basic Concepts -- 16.2 Carbon -- 16.3 Manganese Dioxide -- 16.4 Ruthenium Oxide -- 16.5 Other Pseudocapacitive Materials -- 16.6 Electrolytes -- 16.7 Applications of Electrochemical Capacitors -- 16.8 Electrochemical Capacitor Prospective View -- References -- 17 Electrochemical Capacitors -- 17.1 The Nature of Capacitance -- 17.2 Test Methods -- 17.3 Configuration -- 17.4 Further Practical Concerns -- 17.5 Summary and Conclusions -- 17.6 Symbols -- References -- 18 Kinetics of Fast Redox Systems for Energy Storage -- 18.1 Overview and Introduction -- 18.2 Flow Batteries - Basic Components -- 18.3 Redox Reactions and their Kinetics -- 18.4 Acceleration of Redox Reactions -- 18.5 Materials for Electrodes in Flow Batteries -- 18.6 Catalysis and Surface Enlargement Effects -- 18.7 Future Directions -- References -- 19 Modern Fuel Cell Testing Laboratory -- 19.1 Fuel Cell Laboratory Evolution -- 19.2 Safety and Test Stations -- 19.3 Fuel Cell Stack Components and Assembly -- 19.4 Testing and Diagnostic Techniques -- 19.5 Conclusion -- References -- 20 Polymer Electrolyte Fuel Cells.
505 8 _a20.1 Experimental Methods -- 20.2 H_2/O_2 or Air Fuel Cell Performance Testing -- 20.3 Application of a Fuel Cell Empirical Model -- 20.4 Fuel Crossover and Electrochemical Surface Area -- 20.5 Impedance Spectroscopy of PEM Fuel Cells -- References -- 21 Next-Generation Electrocatalysts -- 21.1 Oxygen-Reduction Reaction - Cathodes -- 21.2 Methanol-Oxidation Reaction - Anodes -- References -- 22 Methods in Biological Fuel Cells -- 22.1 Bioelectrocatalysis -- 22.2 Spectroscopic Methods -- 22.3 Electrochemical Methods -- 22.4 Engineering Considerations -- 22.5 Conclusions -- References -- 23 Energy Conversion Based on Bio(electro)catalysts -- 23.1 Working Principles of Bioelectrochemical Systems -- 23.2 Bioelectrochemical Systems in Cell-Free Systems -- 23.3 General Aspects -- 23.4 Biotransformationwith Redox Enzymes -- 23.5 Conclusions and Outlook -- References -- 24 Photoelectrochemical Conversion Processes -- 24.1 Overview and Historical Perspective -- 24.2 Photoelectrochemical Processes -- 24.3 State-of-the-Art and Emerging Technologies -- 24.4 Summary -- References -- Part E Electrochemical Processes -- 25 Advanced Extractive Electrometallurgy -- 25.1 Conventional Extractive Metallurgy -- 25.2 Innovative Electrolytic Extraction Techniques for Titanium -- 25.3 Direct Electroreduction of Solid Metal Oxides to Metals:The FFC Cambridge Process -- 25.4 Summary -- References -- 26 Electrodeposition of Nanomaterials -- 26.1 Processes for Electrodeposition of Nanomaterials -- 26.2 Electrodeposited Nanomaterials for Energy Storage/Conversion Devices -- 26.3 Conclusions and Prospects -- References -- 27 Electrochemical Hydrogen Production -- 27.1 Theoretical Aspects of Electrochemical Hydrogen Production -- 27.2 Electrochemical Hydrogen Production Methods -- 27.3 Development Perspectives -- 27.4 Conclusions -- References -- 28 Electrochemical Machining.
505 8 _a28.1 Introduction and History -- 28.2 Fundamentals of Electrochemical Machining -- 28.3 Experimental Techniques -- 28.4 The Interface Process During ECM -- 28.5 Classification of ECM Processes -- 28.6 Surface Topography, Crystallographic Effects and Surface Quality -- 28.7 Oxygen Evolution -- 28.8 Pulse ECM -- 28.9 Too Difficult-to-Machine: Hard Metals, Carbides and Nitrides -- References -- About the Authors -- Detailed Contents -- Subject Index.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aEnergy.
655 4 _aElectronic books.
700 1 _aSwider-Lyons, Karen.
776 0 8 _iPrint version:
_aBreitkopf, Cornelia
_tSpringer Handbook of Electrochemical Energy
_dBerlin, Heidelberg : Springer Berlin / Heidelberg,c2016
_z9783662466568
797 2 _aProQuest (Firm)
830 0 _aSpringer Handbooks Series
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4759865
_zClick to View
999 _c120803
_d120803